Simer - Rectilinear Kinematics: Erratic Motion

The `vโ€“S` graph for a test vehicle is shown.

Determine its acceleration when `S = 100\ m` and when `S = 175\ m`.

Interval: `\boldsymbol{S \in [0, 150]}`๐Ÿ”—

`\boldsymbol{v_1 = 0.33S}`๐Ÿ”—

\begin{aligned} v_1 &= \left(\frac{\Delta v}{\Delta S}\right)S \\[1pt] v_1 &= \left(\frac{50 - 0}{150 - 0}\right)S \\[1pt] v_1 &= 0.33S \\[1pt] \end{aligned}

`\boldsymbol{a_1 = 0.11S\ m/s^2}`๐Ÿ”—

\begin{aligned} a_1 &= v \frac{dv}{dS} \\[1pt] a_1 &= 0.33S \left(\frac{d}{dS}\left[0.33S\right]\right) \\[1pt] a_1 &= 0.11S \\[1pt] \end{aligned}

`\boldsymbol{a_1(100) = 11.11\ m/s^2}`๐Ÿ”—

\begin{aligned} a_1 &= 0.11S \\[1pt] a_1(100) &= 0.11(100) \\[1pt] a_1(100) &= 11.11\ m/s^2 \\[1pt] \end{aligned}

Interval: `\boldsymbol{S \in [150, 200]}`๐Ÿ”—

`\boldsymbol{v_2 = -S + 200}`๐Ÿ”—

Slope of the velocity line

\begin{aligned} slope &= \frac{\Delta v}{\Delta S} \\[1pt] slope &= \frac{0 - 50}{200 - 150} \\[1pt] slope &= -1 \\[1pt] \end{aligned}

`y` intercept

\begin{aligned} y &= mx + b \\[1pt] v_2 &= (slope)S + b \\[1pt] 0 &= (-1)(200) + b \\[1pt] b &= 200 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v_2 &= (slope)S + b \\[1pt] v_2 &= (-1)S + 200 \\[1pt] v_2 &= -S + 200 \\[1pt] \end{aligned}

`\boldsymbol{a_2 = S - 200}`๐Ÿ”—

\begin{aligned} a_2 &= v \frac{dv}{dS} \\[1pt] a_2 &= \left(-S + 200\right) \left(\frac{d}{dS}\left[-S + 200\right]\right) \\[1pt] a_2 &= \left(-S + 200\right) \left(-1\right) \\[1pt] a_2 &= S - 200 \\[1pt] \end{aligned}

`\boldsymbol{a_2(175) = -25\ m/s^2}`๐Ÿ”—

\begin{aligned} a_2 &= S - 200 \\[1pt] a_2(175) &= 175 - 200 \\[1pt] a_2(175) &= -25\ m/s^2 \\[1pt] \end{aligned}

The `vโ€“S` graph of a cyclist traveling along a straight road is shown.

Construct the `aโ€“S` graph.

Interval: `\boldsymbol{S \in [0, 100]}`๐Ÿ”—

`\boldsymbol{a_1 = 0.01S + 0.5}`๐Ÿ”—

\begin{aligned} a_1 &= v \frac{dv}{dS} \\[1pt] a_1 &= \left(0.1S + 5\right) \left(\frac{d}{dS} \left[0.1S + 5\right]\right) \\[1pt] a_1 &= \left(0.1S + 5\right) \left(0.1\right) \\[1pt] a_1 &= 0.01S + 0.5 \\[1pt] \end{aligned}

Interval: `\boldsymbol{S \in [100, 350]}`๐Ÿ”—

`\boldsymbol{a_2 = 0.0016S - 0.76}`๐Ÿ”—

\begin{aligned} a_2 &= v \frac{dv}{dS} \\[1pt] a_2 &= \left(-0.04S + 19\right) \left(\frac{d}{dS}\left[-0.04S + 19\right]\right) \\[1pt] a_2 &= \left(-0.04S + 19\right) \left(-0.04\right) \\[1pt] a_2 &= 0.0016S - 0.76 \\[1pt] \end{aligned}

`\boldsymbol{aโ€“S}` graph๐Ÿ”—

The boat travels along a straight line with the speed described by the graph.

Construct the `Sโ€“t` and `aโ€“S` graphs.

Also, determine the time required for the boat to travel a distance `S = 400\ m` if `S = 0` when `t = 0`.

Interval: `\boldsymbol{S \in [0, 100]}`๐Ÿ”—

`\boldsymbol{v_1 = 2\sqrt{S}}`๐Ÿ”—

\begin{aligned} v_1 &= \sqrt{4S} \\[1pt] v_1 &= 2\sqrt{S} \\[1pt] \end{aligned}

`\boldsymbol{a_1 = 2}`๐Ÿ”—

\begin{aligned} a_1 &= v \frac{dv}{dS} \\[1pt] a_1 &= 2\sqrt{S} \left(\frac{d}{dS} \left[2\sqrt{S}\right]\right) \\[1pt] a_1 &= 2\sqrt{S} \left(\frac{1}{\sqrt{S}}\right) \\[1pt] a_1 &= 2 \\[1pt] \end{aligned}

`\boldsymbol{ \begin{bmatrix} \boldsymbol{t_1 = \sqrt{S}} \\ \boldsymbol{S_1 = \left(t_1\right)^2} \\ \end{bmatrix} }`๐Ÿ”—

\begin{aligned} v_1 &= \frac{dS}{dt} \\[1pt] 2\sqrt{S} &= \frac{dS}{dt} \\[1pt] \int_0^S \frac{dS}{2\sqrt{S}} &= \int_0^{t_1} dt \\[1pt] \frac{1}{2}\int_0^S S^{-1/2}\ dS &= t_1 \\[1pt] \sqrt{S} &= t_1 \color{green}\text{ //time function} \\[1pt] S &= \left(t_1\right)^2 \\[1pt] \end{aligned}

Interval: `\boldsymbol{S \in [100, 400]}`๐Ÿ”—

`\boldsymbol{a_2 = 0.04S}`๐Ÿ”—

\begin{aligned} a_2 &= v \frac{dv}{dS} \\[1pt] a_2 &= 0.2S \left(\frac{d}{dS}\left[0.2S\right]\right) \\[1pt] a_2 &= 0.2S \left(0.2\right) \\[1pt] a_2 &= 0.04S \\[1pt] \end{aligned}

`\boldsymbol{ \begin{bmatrix} \boldsymbol{\displaystyle{t_2 = \frac{1}{0.2} \left(\ln \left(S_2\right) - \ln \left(100\right)\right)}} \\ \boldsymbol{\displaystyle{S_2 = e^{0.2t_2 + \ln \left(100\right)}}} \\ \end{bmatrix} }`๐Ÿ”—

\begin{aligned} v_2 &= \frac{dS}{dt} \\[1pt] 0.2S &= \frac{dS}{dt} \\[1pt] \int_{100}^{S_2} \frac{dS}{0.2S} &= \int_0^{t_2} dt \\[1pt] \frac{1}{0.2}\int_{100}^{S_2} \frac{dS}{S} &= t_2 \\[1pt] \frac{1}{0.2} \Big[\ln \left|S\right|\Big]_{100}^{S_2} &= t_2 \\[1pt] \frac{1}{0.2} \left(\ln \left|S_2\right| - \ln \left|100\right|\right) &= t_2 \color{green}\text{ //time function} \\[1pt] \ln \left|S_2\right| &= 0.2t_2 + \ln \left(100\right) \\[1pt] S_2 &= e^{0.2t_2 + \ln \left(100\right)} \\[1pt] \end{aligned}

`\boldsymbol{t = 16.93\ s}`๐Ÿ”—

\begin{aligned} t &= t_1(100) + t_2(400) \\[1pt] t &= \sqrt{100} + \frac{1}{0.2} \left(\ln \left(400\right) - \ln \left(100\right)\right) \\[1pt] t &= 10 + 6.93 \\[1pt] t &= 16.93\ s \\[1pt] \end{aligned}

Time required for the boat to travel a distance `400\ m` is `\boxed{16.93\ seconds}`

The jet plane starts from rest at `S = 0` and is subjected to the acceleration shown.

Determine the speed of the plane when it has traveled `1000\ ft`.

Also, how much time is required for it to travel `1000\ ft`?

`\boldsymbol{\displaystyle{v = \sqrt{150S - 0.025S^2}}}`๐Ÿ”—

\begin{aligned} a &= 75 - 0.025S \\[1pt] v \frac{dv}{dS} &= 75 - 0.025S \\[1pt] \int_0^v v\ dv &= \int_0^S \left(75 - 0.025S\right)\ dS \\[1pt] \frac{v^2}{2} &= 75S - 0.0125S^2 \\[1pt] v &= \sqrt{150S - 0.025S^2} \\[1pt] \end{aligned}

`\boldsymbol{v(1000) = 353.55\ ft/S}`๐Ÿ”—

`v(1000)` is the speed of the plane when it has traveled `1000\ ft`.

\begin{aligned} v(1000) &= \sqrt{150(1000) - 0.025(1000)^2} \\[1pt] v(1000) &= 353.55\ ft/S \\[1pt] \end{aligned}

`\boldsymbol{t = 5.32\ s}`๐Ÿ”—

\begin{aligned} v &= \sqrt{150S - 0.025S^2} \\[1pt] \frac{dS}{dt} &= \sqrt{150S - 0.025S^2} \\[1pt] \int_0^t dt &= \int_0^{S} \frac{dS}{\sqrt{150S - 0.025S^2}} \\[1pt] t &= \int_0^{S} \frac{dS}{\sqrt{150S - 0.025S^2}} \\[1pt] t &= \frac{1}{\sqrt{0.025}} \int_0^{S} \frac{dS}{\sqrt{6000S - S^2}} \\[1pt] \end{aligned}

Simplify denominator (completing the square)

\begin{aligned} -S^2 + 6000S \\[1pt] - \left(S^2 - 6000S\right) \\[1pt] - \left(S^2 + 2(-3000)S + (-3000)^2 - (-3000)^2\right) \\[1pt] - \left(\left(S - 3000\right)^2 - (-3000)^2\right) \\[1pt] (-3000)^2 - \left(S - 3000\right)^2 \\[1pt] (3000)^2 - \left(S - 3000\right)^2 \\[1pt] \end{aligned}

Substitute simplied denominator

\begin{aligned} t &= \frac{1}{\sqrt{0.025}} \int_0^{1000} \frac{dS}{\sqrt{(3000)^2 - \left(S - 3000\right)^2}} \\[1pt] \end{aligned}

`u`-substitution

\begin{aligned} u &= S - 3000\\[1pt] \frac{du}{dS} &= 1\\[1pt] du &= dS\\[1pt] \end{aligned}

Apply `u`-substitution and solve the integral

\begin{aligned} t &= \frac{1}{\sqrt{0.025}} \int_0^{1000} \frac{du}{\sqrt{(3000)^2 - \left(u\right)^2}} \\[1pt] t &= \frac{1}{\sqrt{0.025}} \left[\arcsin \left(\frac{u}{3000}\right)\right]_0^{1000} \\[1pt] t &= \frac{1}{\sqrt{0.025}} \left[\arcsin \left(\frac{S - 3000}{3000}\right)\right]_0^{1000} \color{green}\text{ //substituted }u \\[1pt] t &= -4.62 - \left(-9.93\right) \\[1pt] t &= 5.32\ s \\[1pt] \end{aligned}

The motion of a train is described by the `aโ€“S` graph shown.

Draw the `vโ€“S` graph if `v = 0` at `S = 0`.

Interval: `\boldsymbol{S \in [0, 300]}`๐Ÿ”—

`\boldsymbol{a_1 = 0.01S}`๐Ÿ”—

Slope of acceleration line

\begin{aligned} jerk &= \frac{\Delta a}{\Delta S} \\[1pt] jerk &= \frac{3 - 0}{300 - 0} \\[1pt] jerk &= \frac{3}{300} \\[1pt] jerk &= 0.01 \\[1pt] \end{aligned}

Acceleration function

\begin{aligned} a_1 &= (jerk)S \\[1pt] a_1 &= 0.01S \\[1pt] \end{aligned}

`\boldsymbol{v_1 = 0.1S}`๐Ÿ”—

\begin{aligned} a_1 &= 0.01S \\[1pt] v \frac{dv}{dS} &= 0.01S \\[1pt] \int_0^{v_1} v\ dv &= \int_0^S 0.01S\ dS \\[1pt] \frac{\left(v_1\right)^2}{2} &= 0.005S^2 \\[1pt] v_1 &= \sqrt{0.01S^2} \\[1pt] v_1 &= 0.1S \\[1pt] \end{aligned}

Interval: `\boldsymbol{S \in [300, 600]}`๐Ÿ”—

`\boldsymbol{a_2 = -0.01S + 6}`๐Ÿ”—

Slope of acceleration line

\begin{aligned} jerk &= \frac{\Delta a}{\Delta S} \\[1pt] jerk &= \frac{0 - 3}{600 - 300} \\[1pt] jerk &= \frac{-3}{300} \\[1pt] jerk &= -0.01 \\[1pt] \end{aligned}

`y` intercept

\begin{aligned} y &= mx + b \\[1pt] a_2 &= (jerk)(S) + b \\[1pt] 0 &= (-0.01)(600) + b \\[1pt] b &= 6 \\[1pt] \end{aligned}

Acceleration function

\begin{aligned} a_2 &= (jerk)(S) + b \\[1pt] a_2 &= -0.01S + 6 \\[1pt] \end{aligned}

`\boldsymbol{\displaystyle{v_2 = \sqrt{-0.01S^2 + 12S -1800}}}`๐Ÿ”—

\begin{aligned} a_2 &= -0.01S + 6 \\[1pt] v\frac{dv}{dS} &= -0.01S + 6 \\[1pt] \int_{v_1(300)}^{v_2} v\ dv &= \int_{300}^S \left(-0.01S + 6\right)\ dS \\[1pt] \frac{\left(v_2\right)^2}{2} - \frac{\left(v_1(300)\right)^2}{2} &= \left[-0.005S^2 + 6S\right]_{300}^S \\[1pt] \frac{\left(v_2\right)^2}{2} - \frac{\left(30\right)^2}{2} &= -0.005S^2 + 6S + 0.005(300)^2 - 6(300) \\[1pt] \left(v_2\right)^2 &= -0.01S^2 + 12S + 0.01(300)^2 - 12(300) + \left(30\right)^2 \\[1pt] v_2 &= \sqrt{-0.01S^2 + 12S -1800} \\[1pt] \end{aligned}

`\boldsymbol{vโ€“S}` graph๐Ÿ”—

From experimental data, the motion of a jet plane while traveling along a runway is defined by the `vโ€“t` graph.

Construct the `Sโ€“t` and `aโ€“t` graphs for the motion.

When `t = 0, S = 0`.

Interval: `\boldsymbol{t \in [0, 5]}`๐Ÿ”—

`\boldsymbol{v_1 = 4t}`๐Ÿ”—

\begin{aligned} v_1 &= \frac{\Delta v}{\Delta t}t \\[1pt] v_1 &= \frac{20}{5}t \\[1pt] v_1 &= 4t \\[1pt] \end{aligned}

`\boldsymbol{S_1 = 2t^2}`๐Ÿ”—

\begin{aligned} S_1 &= \int_0^t v\ dt \\[1pt] S_1 &= \int_0^t 4t\ dt \\[1pt] S_1 &= 2t^2 \\[1pt] \end{aligned}

`\boldsymbol{a_1 = 4}`๐Ÿ”—

\begin{aligned} a_1 &= \frac{dv_1}{dt} \\[1pt] a_1 &= \frac{d}{dt} \left[4t\right] \\[1pt] a_1 &= 4 \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [5, 20]}`๐Ÿ”—

`\boldsymbol{v_2 = 20}`๐Ÿ”—

`\boldsymbol{S_2 = 20t - 50}`๐Ÿ”—

\begin{aligned} v_2 &= 20 \\[1pt] \frac{dS}{dt} &= 20 \\[1pt] \int_{S_1(5)}^{S_2} dS &= \int_5^t 20\ dt \\[1pt] S_2 - S_1(5) &= 20t - 20(5) \\[1pt] S_2 - 50 &= 20t - 100 \\[1pt] S_2 &= 20t - 50 \\[1pt] \end{aligned}

`\boldsymbol{a_2 = 0}`๐Ÿ”—

\begin{aligned} a_2 &= \frac{dv_2}{dt} \\[1pt] a_2 &= \frac{d}{dt} \left[20\right] \\[1pt] a_2 &= 0 \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [20, 30]}`๐Ÿ”—

`\boldsymbol{a_3 = 4}`๐Ÿ”—

\begin{aligned} a_3 &= \frac{\Delta v}{\Delta t} \\[1pt] a_3 &= \frac{60 - 20}{30 - 20} \\[1pt] a_3 &= \frac{40}{10} \\[1pt] a_3 &= 4 \\[1pt] \end{aligned}

`\boldsymbol{v_3 = 4t - 60}`๐Ÿ”—

\begin{aligned} a_3 &= 4 \\[1pt] \frac{dv}{dt} &= 4 \\[1pt] \int_{v_2(20)}^{v_3} dv &= \int_{20}^t 4\ dt \\[1pt] \int_{v_2(20)}^{v_3} dv &= \int_{20}^t 4\ dt \\[1pt] v_3 - v_2(20) &= 4t - 4(20) \\[1pt] v_3 - 20 &= 4t - 80 \\[1pt] v_3 &= 4t - 60 \\[1pt] \end{aligned}

`\boldsymbol{S_3 = 2t^2 - 60t + 750}`๐Ÿ”—

\begin{aligned} v_3 &= 4t - 60 \\[1pt] \frac{dS}{dt} &= 4t - 60 \\[1pt] \int_{S_2(20)}^{S_3} dS &= \int_{20}^t \left(4t - 60\right)\ dt \\[1pt] S_3 - S_2(20) &= \left[2t^2 - 60t\right]_{20}^t \\[1pt] S_3 - 350 &= 2t^2 - 60t - 2(20)^2 + 60(20) \\[1pt] S_3 &= 2t^2 - 60t + 750 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

If the position of a particle is defined as `S = \left(5t - 3t^2\right)\ ft`, where `t` is in seconds, construct the `Sโ€“t, vโ€“t` and `aโ€“t` graphs for `0 \le t \le 10s`.

`\boldsymbol{v = 5 - 6t}`๐Ÿ”—

\begin{aligned} v &= \frac{dS}{dt} \\[1pt] v &= \frac{d}{dt} \left[5t - 3t^2\right] \\[1pt] v &= 5 - 6t \\[1pt] \end{aligned}

`\boldsymbol{a = -6}`๐Ÿ”—

\begin{aligned} a &= \frac{dv}{dt} \\[1pt] a &= \frac{d}{dt} \left[5 - 6t\right] \\[1pt] a &= -6 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

Two cars start from rest side by side and travel along a straight road.

Car `A` accelerates at `4\ m/s^2` for `10 s` and then maintains a constant speed.

Car `B` accelerates at `5\ m/s^2` until reaching a constant speed of `25\ m/s` and then maintains this speed.

Construct the `aโ€“t, vโ€“t` and `Sโ€“t` graphs for each car until `t = 15 s`.

What is the distance between the two cars when `t = 15 s`?

Car `\boldsymbol{A}`: Functions๐Ÿ”—

Following are the functions describing motion of Car `A` during and after acceleration.

`\boldsymbol{a_A = 4}`๐Ÿ”—

`\boldsymbol{v_{A_1} = 4t\ \color{green} \left(\textbf{during acceleration}\right)}`๐Ÿ”—

\begin{aligned} a_A &= 4 \\[1pt] \frac{dv}{dt} &= 4 \\[1pt] \int_0^{v_{A_1}} dv &= \int_0^t 4\ dt \\[1pt] v_{A_1} &= 4t \\[1pt] \end{aligned}

`\boldsymbol{S_{A_1} = 2t^2\ \color{green} \left(\textbf{during acceleration}\right)}`๐Ÿ”—

\begin{aligned} v_{A_1} &= 4t \\[1pt] \frac{dS}{dt} &= 4t \\[1pt] \int_0^{S_{A_1}} dS &= \int_0^t 4t\ dt \\[1pt] S_{A_1} &= 2t^2 \\[1pt] \end{aligned}

`\boldsymbol{v_{A_2} = 40\ \color{green} \left(\textbf{no acceleration}\right)}`๐Ÿ”—

It's given that after `10\ seconds`, Car `A` maintains a constant speed.

Following is the velocity function of Car `A`, after it stops accelerating.

\begin{aligned} v &= u + at \\[1pt] v_{A_2} &= v_{A_1}(10) + (0)t \\[1pt] v_{A_2} &= 40 \\[1pt] \end{aligned}

`\boldsymbol{S_{A_2} = 40 t - 200\ \color{green} \left(\textbf{no acceleration}\right)}`๐Ÿ”—

Following is the position function of Car `A`, after it stops accelerating.

\begin{aligned} v_{A_2} &= 40 \\[1pt] \frac{dS}{dt} &= 40 \\[1pt] \int_{S_{A_1}(10)}^{S_{A_2}} dS &= \int_{10}^t 40\ dt \\[1pt] S_{A_2} - S_{A_1}(10) &= 40 t - 40(10) \\[1pt] S_{A_2} &= 40 t - 400 + 200 \\[1pt] S_{A_2} &= 40 t - 200 \\[1pt] \end{aligned}

Car `\boldsymbol{B}`: Functions๐Ÿ”—

Following are the functions describing motion of Car `B` during and after acceleration.

`\boldsymbol{a_B = 5}`๐Ÿ”—

`\boldsymbol{v_{B_1} = 5t\ \color{green} \left(\textbf{during acceleration}\right)}`๐Ÿ”—

\begin{aligned} a_{B_1} &= 5 \\[1pt] \frac{dv}{dt} &= 5 \\[1pt] \int_0^{v_{B_1}} dv &= \int_0^t 5\ dt \\[1pt] v_{B_1} &= 5t \\[1pt] \end{aligned}

`\boldsymbol{S_{B_1} = 2.5t^2\ \color{green} \left(\textbf{during acceleration}\right)}`๐Ÿ”—

\begin{aligned} v_{B_1} &= 5t \\[1pt] \frac{dS}{dt} &= 5t \\[1pt] \int_0^{S_{B_1}} dS &= \int_0^t 5t\ dt \\[1pt] S_{B_1} &= 2.5t^2 \\[1pt] \end{aligned}

`\boldsymbol{v_{B_2} = 25\ \color{green} \left(\textbf{no acceleration}\right)}`๐Ÿ”—

It's given that Car `B` accelerates until reaching a constant speed of `25\ m/s` and then maintains this speed.

Therefore, the function that describe the velocity of Car `B` during this interval is following:

\begin{aligned} v_{B_2} &= 25 \\[1pt] \end{aligned}

`\boldsymbol{S_{B_2} = 25t -62.5\ \color{green} \left(\textbf{no acceleration}\right)}`๐Ÿ”—

Now, derive the position function for Car `B` after it stops accelerating is i.e. which it reaches the constant speed of `25\ m/s`.

How long does it take for Car `B` to reach this constant speed?

\begin{aligned} v_{B_1} &= 5t \\[1pt] 25 &= 5t \\[1pt] t &= 5 \\[1pt] \end{aligned}

Car `B` takes `\boxed{5\ seconds}` to reach the constant speed of `25\ m/s`.

Position function

The position function of Car `B` after it stops accelerating is following:

\begin{aligned} v_{B_2} &= 25 \\[1pt] \frac{dS}{dt} &= 25 \\[1pt] \int_{S_{B_1}(5)}^{S_{B_2}} dS &= \int_5^t 25\ dt \\[1pt] S_{B_2} - S_{B_1}(5) &= \Big[25t\Big]_5^t \\[1pt] S_{B_2} - 62.5 &= 25t - 125 \\[1pt] S_{B_2} &= 25t - 125 + 62.5 \\[1pt] S_{B_2} &= 25t -62.5 \\[1pt] \end{aligned}

`\boldsymbol{S_{distance} = 87.5\ m}`๐Ÿ”—

`S_{distance}` is the distance between the two cars when `t = 15 s`.

\begin{aligned} S_{distance} &= S_{A_2}(15) - S_{B_2}(15) \\[1pt] S_{distance} &= 400 - 312.5 \\[1pt] S_{distance} &= 87.5\ m \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

A man riding upward in a freight elevator accidentally drops a package off the elevator when it is `100\ ft` from the ground.

If the elevator maintains a constant upward speed of `4\ ft/s`, determine how high the elevator is from the ground the instant the package hits the ground.

Draw the `vโ€“t` curve for the package during the time it is in motion.

Assume that the package was released with the same upward speed as the elevator.

`\boldsymbol{S_{distance} = 110.48\ ft}`๐Ÿ”—

Convert gravity into `ft/s^2`

\begin{aligned} g &= -9.81 \ m/s^2 \\[1pt] g &= \frac{-9.81}{0.3048}\ ft/s^2 = \boxed{-32.19 \ ft/s^2} \\[1pt] \end{aligned}

What is the final velocity of the package when it hits the ground?

\begin{aligned} v^2 &= u^2 + 2aS \\[1pt] v^2 &= 4^2 + 2(-32.19)(0 - 100) \\[1pt] v &= 80.33\ ft/s \\[1pt] \end{aligned}

The package hits the ground with velocity `\boxed{80.33\ ft/s}`.

How long does the package take to reach its final velocity?

\begin{aligned} v &= u + at \\[1pt] -80.33 &= 4 - 9.81t \\[1pt] t &= 2.62 \\[1pt] \end{aligned}

It takes `\boxed{2.62\ seconds}` for the package to hit the ground.

How far did the elevator travel up during those `2.62\ seconds`?

It's given that the elevator maintains a constant upward speed of `4\ ft/s`.

\begin{aligned} S_{fall} &= 4 \times 2.62 \\[1pt] S_{fall} &= 10.48 \\[1pt] \end{aligned}

The elevator travelled up a distance of `\boxed{10.48\ ft}` while the package was falling.

What is the total distance travelled by the elevator?

\begin{aligned} S_{distance} &= 100 + S_{fall} \\[1pt] S_{distance} &= 100 + 10.48 \\[1pt] S_{distance} &= 110.48\ ft \\[1pt] \end{aligned}

The elevator travelled up a total distance of `\boxed{110.48\ ft}` from the ground.

The speed of a train during the first minute has been recorded as follows:

Plot the `vโ€“t` graph, approximating the curve as straight-line segments between the given points.

Determine the total distance traveled.

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{S_1 = 160\ m}`๐Ÿ”—

Distance travelled in first interval `t \in [0, 20]` is area of the triangle.

\begin{aligned} S_1 &= \frac{1}{2} (20 - 0) (16) \\[1pt] S_1 &= 160\ m \\[1pt] \end{aligned}

`\boldsymbol{S_2 = 370\ m}`๐Ÿ”—

Distance travelled in second interval `t \in [20, 40]` is area of the trapezoid.

\begin{aligned} S_2 &= \frac{1}{2} (16 + 21) (40 - 20) \\[1pt] S_2 &= 370\ m \\[1pt] \end{aligned}

`\boldsymbol{S_3 = 450\ m}`๐Ÿ”—

Distance travelled in third interval `t \in [40, 60]` is area of the trapezoid.

\begin{aligned} S_3 &= \frac{1}{2} (21 + 24) (60 - 40) \\[1pt] S_3 &= 450\ m \\[1pt] \end{aligned}

`\boldsymbol{S_{distance} = 980\ m}`๐Ÿ”—

\begin{aligned} S_{distance} &= S_1 + S_2 + S_3 \\[1pt] S_{distance} &= 160 + 370 + 450 \\[1pt] S_{distance} &= 980\ m \\[1pt] \end{aligned}

A two-stage rocket is fired vertically from rest with the acceleration shown.

After `15 s` the first stage `A` burns out and the second stage `B` ignites.

Plot the `vโ€“t` and `Sโ€“t` graphs which describe the motion of the second stage for `0 \le t \le 40s`.

Interval: `\boldsymbol{t \in [0, 15]}`๐Ÿ”—

`\boldsymbol{a_1 = t}`๐Ÿ”—

Acceleration here is directly proportional to `t`.

\begin{aligned} a_1 &= t \\[1pt] \end{aligned}

`\boldsymbol{v_1 = 0.5t^2}`๐Ÿ”—

\begin{aligned} v_1 &= \int_0^t a_1\ dt \\[1pt] v_1 &= \int_0^t t\ dt \\[1pt] v_1 &= \left[\frac{t^2}{2}\right]_0^t \\[1pt] v_1 &= 0.5t^2 \\[1pt] \end{aligned}

`\boldsymbol{S_1 = 0.17 t^3}`๐Ÿ”—

\begin{aligned} v_1 &= 0.5t^2 \\[1pt] S_1 &= \int_0^t 0.5t^2 \\[1pt] S_1 &= 0.17 t^3 \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [15, 40]}`๐Ÿ”—

`\boldsymbol{a_2 = 20}`๐Ÿ”—

`\boldsymbol{v_2 = 20t -187.5}`๐Ÿ”—

Velocity function can be found using either one of the following approaches.

Using integration

\begin{aligned} a_2 &= 20 \\[1pt] \frac{dv}{dt} &= 20 \\[1pt] \int_{v_1(15)}^{v_2} dv &= \int_{15}^t 20\ dt \\[1pt] v_2 - v_1(15) &= 20t - 20(15) \\[1pt] v_2 &= 20t - 300 + 112.5 \\[1pt] v_2 &= 20t -187.5 \\[1pt] \end{aligned}

Using equation of motion with constant acceleration

\begin{aligned} v &= u + at \\[1pt] v_2 &= v_1(15) + (20)(t - 15) \\[1pt] v_2 &= 112.5 + 20t - 20(15) \\[1pt] v_2 &= 112.5 + 20t - 300 \\[1pt] v_2 &= 20t -187.5 \\[1pt] \end{aligned}

`\boldsymbol{S_2 = 10t^2 -187.5 t + 1125}`๐Ÿ”—

\begin{aligned} v_2 &= 20t -187.5 \\[1pt] \frac{dS}{dt} &= 20t -187.5 \\[1pt] \int_{S_1(15)}^{S_2} dS &= \int_{15}^t \left(20t -187.5\right)\ dt \\[1pt] S_2 - S_1(15) &= \left[10t^2 -187.5 t\right]_{15}^t \\[1pt] S_2 - 562.5 &= 10t^2 -187.5 t - 10(15)^2 + 187.5(15) \\[1pt] S_2 &= 10t^2 -187.5 t + 1125 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—


12-56 & 12-57๐Ÿ”—

Starting from rest at `S = 0`, a boat travels in a straight line with the acceleration shown by the `aโ€“S` graph.

12-56

Determine the boatโ€™s speed when `S = 50\ ft`, `100\ ft`, and `150\ ft`.

12-57

Construct the vโ€“s graph.

Solution: 12-56๐Ÿ”—

Interval 1: `\boldsymbol{S \in [0, 100]}`๐Ÿ”—

`\boldsymbol{a_1 = -0.02 S + 8}`๐Ÿ”—

Slope of the acceleration line

\begin{aligned} jerk &= \frac{\Delta a}{\Delta S} \\[1pt] jerk &= \frac{6 - 8}{100 - 0} \\[1pt] jerk &= -0.02 \\[1pt] \end{aligned}

`y` intercept

\begin{aligned} y &= mx + b \\[1pt] 8 &= (-0.02)(0) + b \\[1pt] b &= 8 \\[1pt] \end{aligned}

Acceleration function

\begin{aligned} y &= mx + b \\[1pt] a_1 &= (jerk)S + b \\[1pt] a_1 &= -0.02 S + 8 \\[1pt] \end{aligned}

`\boldsymbol{\displaystyle{v_1 = \sqrt{-0.02 S^2 + 16S}}}`๐Ÿ”—

\begin{aligned} a_1 &= -0.02 S + 8 \\[1pt] v \frac{dv}{dS} &= -0.02 S + 8 \\[1pt] \int_0^{v_1} v \ dv &= \int_0^S \left(-0.02 S + 8\right)\ dS \\[1pt] \frac{\left(v_1\right)^2}{2} &= \left[-0.01 S^2 + 8S\right]_0^S \\[1pt] \frac{\left(v_1\right)^2}{2} &= -0.01 S^2 + 8S \\[1pt] v_1 &= \sqrt{-0.02 S^2 + 16S} \\[1pt] \end{aligned}

To determine the boatโ€™s speed when `S = 50\ ft` and `S = 100\ ft` execute the function `v_1` for those `S` values i.e. `v_1(50)` and `v_1(100)`.

`\boldsymbol{ \begin{bmatrix} \boldsymbol{v_1(50) = 27.39\ ft/s} \\ \boldsymbol{v_1(100) = 37.42\ ft/s} \\ \end{bmatrix} }`๐Ÿ”—

Interval 2: `\boldsymbol{S \in [100, 150]}`๐Ÿ”—

`\boldsymbol{a_2 = -0.12 S + 18}`๐Ÿ”—

Slope of the acceleration line

\begin{aligned} jerk &= \frac{\Delta a}{\Delta S} \\[1pt] jerk &= \frac{0 - 6}{150 - 100} \\[1pt] jerk &= -0.12 \\[1pt] \end{aligned}

`y` intercept

\begin{aligned} y &= mx + b \\[1pt] a &= (jerk)S + b \\[1pt] 0 &= (-0.12)(150) + b \\[1pt] b &= 18 \\[1pt] \end{aligned}

Acceleration function

\begin{aligned} y &= mx + b \\[1pt] a_2 &= (jerk)S + b \\[1pt] a_2 &= -0.12 S + 18 \\[1pt] \end{aligned}

`\boldsymbol{\displaystyle{v_2 = \sqrt{-0.12 S^2 + 36 S -1000}}}`๐Ÿ”—

\begin{aligned} a_2 &= -0.12 S + 18 \\[1pt] v \frac{dv}{dS} &= -0.12 S + 18 \\[1pt] \int_{v_1(100)}^{v_2} v \ dv &= \int_{100}^S \left(-0.12 S + 18\right)\ dS \\[1pt] \left[\frac{v^2}{2}\right]_{v_1(100)}^{v_2} &= \left[-0.06 S^2 + 18 S\right]_{100}^S \\[1pt] \frac{\left(v_2\right)^2}{2} - \frac{\left(v_1(100)\right)^2}{2} &= -0.06 S^2 + 18 S + 0.06(100)^2 - 18(100) \\[1pt] \left(v_2\right)^2 &= -0.12 S^2 + 36 S + 0.12(100)^2 - 36(100) + \left(37.42\right)^2 \\[1pt] v_2 &= \sqrt{-0.12 S^2 + 36 S -1000} \\[1pt] \end{aligned}

To determine the boatโ€™s speed when `S = 150\ ft` execute the function `v_2` for that `S` value i.e. `v_2(150)`.

`\boldsymbol{v_2(150) = 41.23\ ft/s}`๐Ÿ”—

Solution: 12-57๐Ÿ”—

`\boldsymbol{vโ€“S}` graph๐Ÿ”—

An airplane lands on the straight runway, originally traveling at `110\ ft/s` when `S = 0`.

If it is subjected to the decelerations shown, determine the time `t'` needed to stop the plane and construct the `Sโ€“t` graph for the motion.

Interval 1: `\boldsymbol{t \in [0, 5]}`๐Ÿ”—

`\boldsymbol{v_1 = 110}`๐Ÿ”—

`\boldsymbol{a_1 = 0}`๐Ÿ”—

`\boldsymbol{S_1 = 110t}`๐Ÿ”—

\begin{aligned} v_1 &= 110 \\[1pt] S_1 &= \int_0^t 110t \\[1pt] S_1 &= 110t \\[1pt] \end{aligned}

Interval 2: `\boldsymbol{t \in [5, 15]}`๐Ÿ”—

`\boldsymbol{a_2 = -3}`๐Ÿ”—

`\boldsymbol{v_2 = -3t + 125}`๐Ÿ”—

\begin{aligned} v_2 &= u + at \\[1pt] v_2 &= 110 + (-3)(t - 5) \\[1pt] v_2 &= 110 -3t + 15 \\[1pt] v_2 &= -3t + 125 \\[1pt] \end{aligned}

`\boldsymbol{S_2 = -1.5t^2 + 125t -37.5}`๐Ÿ”—

\begin{aligned} v_2 &= -3t + 125 \\[1pt] \frac{dS}{dt} &= -3t + 125 \\[1pt] \int_{S_1(5)}^{S_2} dS &= \int_5^t \left(-3t + 125\right)\ dt \\[1pt] S_2 - S_1(5) &= \left[-1.5t^2 + 125t\right]_5^t \\[1pt] S_2 - 550 &= -1.5t^2 + 125t + 1.5(5)^2 - 125(5) \\[1pt] S_2 &= -1.5t^2 + 125t -37.5 \\[1pt] \end{aligned}

Interval 3: `\boldsymbol{t \in [15, 20]}`๐Ÿ”—

`\boldsymbol{a_3 = -8}`๐Ÿ”—

`\boldsymbol{v_3 = -8t + 200}`๐Ÿ”—

\begin{aligned} v_3 &= u + at \\[1pt] v_3 &= v_2(15) + (-8)(t - 15) \\[1pt] v_3 &= 80 - 8t + 120 \\[1pt] v_3 &= -8t + 200 \\[1pt] \end{aligned}

`\boldsymbol{S_3 = -4t^2 + 200 t -600}`๐Ÿ”—

\begin{aligned} v_3 &= -8t + 200 \\[1pt] \frac{dS}{dt} &= -8t + 200 \\[1pt] \int_{S_2(15)}^{S_3} dS &= \int_{15}^{t} \left(-8t + 200\right)\ dt \\[1pt] S_3 - S_2(15) &= \left[-4t^2 + 200 t\right]_{15}^{t} \\[1pt] S_3 - 1500 &= -4t^2 + 200 t + 4(15)^2 - 200(15) \\[1pt] S_3 &= -4t^2 + 200 t -600 \\[1pt] \end{aligned}

Interval 4: `\boldsymbol{t \in [20, t']}`๐Ÿ”—

`\boldsymbol{a_4 = -3}`๐Ÿ”—

`\boldsymbol{v_4 = -3t + 100}`๐Ÿ”—

\begin{aligned} v_4 &= u + at \\[1pt] v_4 &= v_3(20) + (-3)(t - 20) \\[1pt] v_4 &= 40 - 3t + 60 \\[1pt] v_4 &= -3t + 100 \\[1pt] \end{aligned}

`\boldsymbol{S_4 = -1.5t^2 + 100t + 400}`๐Ÿ”—

\begin{aligned} v_4 &= -3t + 100 \\[1pt] \frac{dS}{dt} &= -3t + 100 \\[1pt] \int_{S_3(20)}^{S_4} dS &= \int_{20}^t \left(-3t + 100\right)\ dt \\[1pt] S_4 - S_3(20) &= \left[-1.5t^2 + 100t\right]_{20}^t \\[1pt] S_4 - 1800 &= -1.5t^2 + 100t + 1.5(20)^2 - 100(20) \\[1pt] S_4 &= -1.5t^2 + 100t + 400 \\[1pt] \end{aligned}

`\boldsymbol{t' = 33.33\ s}`๐Ÿ”—

`t'` is when `v_4 = 0`

\begin{aligned} v_4 &= -3t + 100 \\[1pt] -3t' + 100 &= 0 \\[1pt] t' &= \frac{100}{3} \\[1pt] t' &= 33.33\ s \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

The `vโ€“t` graph for the motion of a car as it moves along a straight road is shown.

Draw the `Sโ€“t` and `aโ€“t` graphs.

Also determine the average speed and the distance traveled for the `15\ s` time interval.

When `t = 0`, `S = 0`.

Interval: `\boldsymbol{t \in [0, 5]}`๐Ÿ”—

`\boldsymbol{S_1 = 0.2t^3}`๐Ÿ”—

\begin{aligned} v_1 &= 0.6t^2 \\[1pt] \frac{dS}{dt} &= 0.6t^2 \\[1pt] \int_0^{S_1} dS &= \int_0^t 0.6t^2\ dt \\[1pt] S_1 &= 0.2t^3 \\[1pt] \end{aligned}

`\boldsymbol{a_1 = 1.2t}`๐Ÿ”—

\begin{aligned} v_1 &= 0.6t^2 \\[1pt] a_1 &= \frac{d}{dt} \left[0.6t^2\right] \\[1pt] a_1 &= 1.2t \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [5, 15]}`๐Ÿ”—

`\boldsymbol{a_2 = -1.5}`๐Ÿ”—

\begin{aligned} a_2 &= \frac{\Delta v}{\Delta t} \\[1pt] a_2 &= \frac{0 - 15}{15 - 5} \\[1pt] a_2 &= \frac{- 15}{10} \\[1pt] a_2 &= -1.5 \\[1pt] \end{aligned}

`\boldsymbol{v_2 = -1.5t + 22.5}`๐Ÿ”—

`y` intercept

\begin{aligned} y &= mx + b \\[1pt] v_2 &= a_2t + b \color{green}\text{ //function 1}\\[1pt] 0 &= (-1.5)(15) + b \\[1pt] b &= 22.5 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v_2 &= a_2t + b \color{green}\text{ //function 1}\\[1pt] v_2 &= -1.5t + 22.5 \\[1pt] \end{aligned}

`\boldsymbol{S_2 = -0.75t^2 + 22.5t -68.75}`๐Ÿ”—

\begin{aligned} v_2 &= -1.5t + 22.5 \\[1pt] \frac{dS}{dt} &= -1.5t + 22.5 \\[1pt] \int_{S_1(5)}^{S_2} dS &= \int_5^t \left(-1.5t + 22.5\right)\ dt \\[1pt] S_2 - S_1(5) &= \left[-0.75t^2 + 22.5t\right]_5^t \\[1pt] S_2 - 25 &= -0.75t^2 + 22.5t + 0.75(5)^2 - 22.5(5) \\[1pt] S_2 &= -0.75t^2 + 22.5t -68.75 \\[1pt] \end{aligned}

`\boldsymbol{S_{distance} = 100\ m}`๐Ÿ”—

`S_{distance}` is the distance traveled for the `15\ s` time interval.

\begin{aligned} S_{distance} &= \left|\int_0^5 v_1\ dt\right| + \left|\int_{5}^{15} v_2\ dt\right| \\[1pt] S_{distance} &= \left|S_1(5) - S_1(0)\right| + \left|S_2(15) - S_2(5)\right| \\[1pt] S_{distance} &= \left|25 - 0\right| + \left|100 - 25\right| \\[1pt] S_{distance} &= 100\ m \\[1pt] \end{aligned}

`\boldsymbol{v_{avg} = 6.67\ m/s}`๐Ÿ”—

\begin{aligned} v_{avg} &= \frac{S_{distance}}{\text{Total time}} \\[1pt] v_{avg} &= \frac{100}{15} \\[1pt] v_{avg} &= 6.67\ m/s \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—


12-52 & 12-53๐Ÿ”—

A motorcycle starts from rest at `S = 0` and travels along a straight road with the speed shown by the `vโ€“t` graph.

12-52

  • Determine the total distance the motorcycle travels until it stops when `t = 15\ s`.
  • Also plot the `aโ€“t` and `Sโ€“t` graphs.

12-53

Determine the motorcycleโ€™s acceleration and position when `t = 8\ s` and `t = 12\ s`.

Solution: 12-52๐Ÿ”—

Interval: `\boldsymbol{t \in [0, 4]}`๐Ÿ”—

`\boldsymbol{S_1 = 0.625 t^2}`๐Ÿ”—

\begin{aligned} v_1 &= 1.25t \\[1pt] \frac{dS}{dt} &= 1.25t \\[1pt] \int_0^{S_1} dS &= \int_0^t 1.25t\ dt \\[1pt] S_1 &= 0.625 t^2 \\[1pt] \end{aligned}

`\boldsymbol{a_1 = 1.25}`๐Ÿ”—

\begin{aligned} v_1 &= 1.25t \\[1pt] a_1 &= \frac{d}{dt} \left[1.25t\right] \\[1pt] a_1 &= 1.25 \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [4, 10]}`๐Ÿ”—

`\boldsymbol{S_2 = 5t - 10}`๐Ÿ”—

\begin{aligned} v_2 &= 5 \\[1pt] \frac{dS}{dt} &= 5 \\[1pt] \int_{S_1(4)}^{S_2} dS &= \int_4^t 5\ dt \\[1pt] S_2 - S_1(4) &= \Big[5t\Big]_4^t \\[1pt] S_2 - 10 &= 5t - 20 \\[1pt] S_2 &= 5t - 10 \\[1pt] \end{aligned}

`\boldsymbol{a_2 = 0}`๐Ÿ”—

\begin{aligned} v_2 &= 5 \\[1pt] a_2 &= \frac{d}{dt} \left[5\right] \\[1pt] a_2 &= 0 \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [10, 15]}`๐Ÿ”—

`\boldsymbol{S_3 = -0.5t^2 + 15t -60}`๐Ÿ”—

\begin{aligned} v_3 &= -t + 15 \\[1pt] \frac{dS}{dt} &= -t + 15 \\[1pt] \int_{S_2(10)}^{S_3} dS &= \int_{10}^t \left(-t + 15\right)\ dt \\[1pt] S_3 - S_2(10) &= \left[\frac{-t^2}{2} + 15t\right]_{10}^t \\[1pt] S_3 - 40 &= \frac{-t^2}{2} + 15t + 50 - 150 \\[1pt] S_3 &= -0.5t^2 + 15t -60 \\[1pt] \end{aligned}

`\boldsymbol{a_3 = -1}`๐Ÿ”—

\begin{aligned} v_3 &= -t + 15 \\[1pt] a_3 &= \frac{d}{dt} \left[-t + 15\right] \\[1pt] a_3 &= -1 \\[1pt] \end{aligned}

`\boldsymbol{S_{total} = 52.5\ m}`๐Ÿ”—

`S_{total}` is the total distance the motorcycle travels until it stops at `t = 15\ s`.

\begin{aligned} S_{total} &= \left|\int_0^4 v_1\ dt\right| + \left|\int_{4}^{10} v_2\ dt\right| + \left|\int_{10}^{15} v_3\ dt\right| \\[1pt] S_{total} &= \left|S_1(4) - S_1(0)\right| + \left|S_2(10) - S_2(4)\right| + \left|S_3(15) - S_2(10)\right| \\[1pt] S_{total} &= \left|10 - 0\right| + \left|40 - 10\right| + \left|52.5 - 40\right| \\[1pt] S_{total} &= 52.5\ m \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

Solution: 12-53๐Ÿ”—

To solve for the question in 12-53, apply the functions derived above for time `t = 8\ s` and `t = 12\ s`.

`\boldsymbol{a_2(8) = 0\ m/s^2}`๐Ÿ”—

\begin{aligned} a_2 &= 0 \\[1pt] a_2(8) &= 0 \\[1pt] \end{aligned}

`\boldsymbol{S_2(8) = 30\ m}`๐Ÿ”—

\begin{aligned} S_2 &= 5t - 10 \\[1pt] S_2(8) &= 30 \\[1pt] \end{aligned}

`\boldsymbol{a_3(12) = -1\ m/s^2}`๐Ÿ”—

\begin{aligned} a_3 &= 0 \\[1pt] a_3(12) &= -1 \\[1pt] \end{aligned}

`\boldsymbol{S_3(12) = 48\ m}`๐Ÿ”—

\begin{aligned} S_3 &= -0.5t^2 + 15t -60 \\[1pt] S_3(12) &= 48 \\[1pt] \end{aligned}

The `vโ€“t` graph for a train has been experimentally determined.

From the data, construct the `Sโ€“t` and `aโ€“t` graphs for the motion for `0 \le t \le 180\ s`.

When `t = 0, S = 0`.

Interval: `\boldsymbol{t \in [0, 60]}`๐Ÿ”—

`\boldsymbol{v_1 = 0.1t}`๐Ÿ”—

Velocity function for the first interval.

\begin{aligned} v_1 &= \frac{\Delta v}{\Delta t}t \\[1pt] v_1 &= \left(\frac{6 - 0}{60 - 0}\right)t \\[1pt] v_1 &= 0.1t \\[1pt] \end{aligned}

`\boldsymbol{S_1 = 0.05t^2}`๐Ÿ”—

Position function for the first interval.

\begin{aligned} S_1 &= \int_0^t 0.1t \\[1pt] S_1 &= 0.05t^2 \\[1pt] \end{aligned}

`\boldsymbol{a_1 = 0.1}`๐Ÿ”—

Acceleration function for the first interval.

\begin{aligned} a_1 &= \frac{d}{dt}\left[v_1\right] \\[1pt] a_1 &= \frac{d}{dt}\left[0.1t\right] \\[1pt] a_1 &= 0.1 \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [60, 120]}`๐Ÿ”—

`\boldsymbol{v_2 = 6}`๐Ÿ”—

Velocity function for the second interval.

\begin{aligned} v_2 &= 6 \\[1pt] \end{aligned}

`\boldsymbol{S_2 = 6t -180}`๐Ÿ”—

Position function for the second interval.

\begin{aligned} v_2 &= 6 \\[1pt] \frac{dS}{dt} &= 6 \\[1pt] \int_{S_1(60)}^{S_2} dS &= \int_{60}^t 6\ dt \\[1pt] S_2 - S_1(60) &= \Big[6t\Big]_{60}^t \\[1pt] S_2 - 180 &= 6t - 360 \\[1pt] S_2 &= 6t -180 \\[1pt] \end{aligned}

`\boldsymbol{a_2 = 0}`๐Ÿ”—

\begin{aligned} a_2 &= \frac{d}{dt} \left[v_2\right] \\[1pt] a_2 &= \frac{d}{dt} \left[6\right] \\[1pt] a_2 &= 0 \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [120, 180]}`๐Ÿ”—

`\boldsymbol{v_3 = 0.07t -2}`๐Ÿ”—

Slope of the velocity curve/incline

\begin{aligned} slope &= \frac{\Delta v}{\Delta t} \\[1pt] slope &= \frac{10 - 6}{180 - 120} \\[1pt] slope &= 0.07 \\[1pt] \end{aligned}

`y` intercept

\begin{aligned} y &= mx + b \\[1pt] 6 &= (0.07)(120) + b \\[1pt] b &= -2 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v_3 &= (slope)t + b \\[1pt] v_3 &= 0.07t -2 \\[1pt] \end{aligned}

`\boldsymbol{S_3 = 0.03t^2 -2 t + 300}`๐Ÿ”—

\begin{aligned} v_3 &= 0.07t -2 \\[1pt] \frac{dS}{dt} &= 0.07t -2 \\[1pt] \int_{S_2(120)}^{S_3} dS &= \int_{120}^t \left(0.07t -2\right)\ dt \\[1pt] S_3 - S_2(120) &= \Big[0.03t^2 -2 t\Big]_{120}^t \\[1pt] S_3 - 540 &= 0.03t^2 -2 t - 0.03(120)^2 + 2(120) \\[1pt] S_3 &= 0.03t^2 -2 t + 300 \\[1pt] \end{aligned}

`\boldsymbol{a_3 = 0.07}`๐Ÿ”—

\begin{aligned} a_3 &= \frac{d}{dt} \left[0.07t -2\right] \\[1pt] a_3 &= 0.07 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

The car starts from rest at `S = 0` and is subjected to an acceleration shown by the `aโ€“S` graph.

Draw the `vโ€“S` graph and determine the time needed to travel `200\ ft`.

Interval 1: When `\boldsymbol{S \in [0, 300]}`๐Ÿ”—

`\boldsymbol{a_1 = 12\ ft/s^2}`๐Ÿ”—

Acceleration function for the first interval.

\begin{aligned} a_1 &= 12 \\[1pt] \end{aligned}

`\boldsymbol{v_1 = \left(\sqrt{24S}\right)\ ft/s}`๐Ÿ”—

Velocity function for the first interval.

\begin{aligned} a_1 &= 12 \\[1pt] v \frac{dv}{dS} &= 12 \\[1pt] \int_0^{v_1} v\ dv &= \int_0^S 12\ dS \\[1pt] \left[\frac{v^2}{2}\right]_0^{v_1} &= 12S \\[1pt] \frac{\left(v_1\right)^2}{2} &= 12S \\[1pt] v_1 &= \sqrt{24S} \\[1pt] \end{aligned}

`\boldsymbol{S_1 = \left(8t^2\right)\ ft}`๐Ÿ”—

Position function for the first interval.

\begin{aligned} v_1 &= \sqrt{24S} \\[1pt] \frac{dS}{dt} &= \sqrt{24S} \\[1pt] \frac{dS}{\sqrt{24S}} &= dt \\[1pt] \frac{1}{\sqrt{24}}\int_0^{S_1} S^{-1/2}\ dS &= \int_0^t dt \\[1pt] \frac{1}{\sqrt{24}} \left[2\sqrt{S}\right]_0^{S_1} &= t \\[1pt] \frac{2}{\sqrt{24}} \sqrt{S_1} &= t \color{green}\text{ //equation 1} \\[1pt] \sqrt{S_1} &= \frac{t\sqrt{24}}{2} \\[1pt] S_1 &= 8t^2 \\[1pt] \end{aligned}

`\boldsymbol{t_{200ft} = 5.77\ s}`๐Ÿ”—

`t_{200ft}` is the time taken to travel `200\ ft`.

\begin{aligned} t &= \frac{2}{\sqrt{24}} \sqrt{S_1} \color{green}\text{ //equation 1} \\[1pt] t_{200ft} &= \frac{2}{\sqrt{24}} \sqrt{200} \\[1pt] t_{200ft} &= 5.77\ s \\[1pt] \end{aligned}

Interval 2: When `\boldsymbol{S \in [300, 450]}`๐Ÿ”—

`\boldsymbol{\displaystyle{v_2 = \left(\sqrt{-0.04S^2 + 48S -3600}\right)\ ft/S}}`๐Ÿ”—

\begin{aligned} a_2 &= -0.04S + 24 \\[1pt] v \frac{dv}{dS} &= -0.04S + 24 \\[1pt] \int_{v_1(300)}^{v_2} v\ dv &= \int_{300}^{S} \left(-0.04S + 24\right)\ dS \\[1pt] \left[\frac{v^2}{2}\right]_{v_1(300)}^{v_2} &= \Big[-0.02S^2 + 24S\Big]_{300}^{S} \\[1pt] \frac{\left(v_2\right)^2}{2} - \frac{\left(84.85\right)^2}{2} &= -0.02S^2 + 24S + 0.02(300)^2 - 24(300) \\[1pt] v_2 &= \sqrt{-0.04S^2 + 48S -3600} \\[1pt] \end{aligned}

`\boldsymbol{vโ€“S}` graph๐Ÿ”—

The jet car is originally traveling at a velocity of `10\ m/s` when it is subjected to the acceleration shown.

Determine the carโ€™s maximum velocity and the time `t'` when it stops.

When `t = 0, S = 0`.

`\boldsymbol{\displaystyle{v_1 = \left(10 + 6t\right)\ m/s}}`๐Ÿ”—

Velocity function for the first interval.

\begin{aligned} v &= u + at \\[1pt] v_1 &= 10 + 6t \\[1pt] \end{aligned}

`\boldsymbol{v_2 = \left(100 - 4t\right)\ m/s}`๐Ÿ”—

Velocity function for the second interval.

\begin{aligned} v &= u + at \\[1pt] v_2 &= v_1(15) + (-4)t \\[1pt] v_2 &= 100 - 4t \\[1pt] \end{aligned}

`\boldsymbol{t' = 40\ s}`๐Ÿ”—

Time velocity is `0` in the second interval

\begin{aligned} v_2 &= 0 \\[1pt] 100 - 4t_2 &= 0 \\[1pt] t_2 &= \frac{100}{4} \\[1pt] t_2 &= 25 \\[1pt] \end{aligned}

`t'` is `t_2` plus the time taken to complete the first interval

\begin{aligned} t' &= t_2 + 15 \\[1pt] t' &= 25 + 15 \\[1pt] t' &= 40 \\[1pt] \end{aligned}

`\boldsymbol{v_{max} = 100\ m/s}`๐Ÿ”—

\begin{aligned} v_{max} &= \max \left(v_1(15), v_2(15)\right) \\[1pt] v_{max} &= \max \left(100, 40\right) \\[1pt] v_{max} &= 100 \\[1pt] \end{aligned}

The race car starts from rest and travels along a straight road until it reaches a speed of `26\ m/s` in `8\ s` as shown on the `vโ€“t` graph.

The flat part of the graph is caused by shifting gears.

Draw the `aโ€“t` graph and determine the maximum acceleration of the car.

Interval 1: `\boldsymbol{\displaystyle{a_1 = \left\{3.5 \ \big|\ t \in [0, 4]\right\}\ m/s^2}}`๐Ÿ”—

Acceleration function for the first interval when `t \in [0, 4]`

\begin{aligned} a_1 &= \frac{dv}{dt} \\[1pt] a_1 &= \frac{d}{dt} \left[3.5t\right] \\[1pt] a_1 &= 3.5\ m/s^2 \\[1pt] \end{aligned}

Interval 2: `\boldsymbol{\displaystyle{a_2 = \left\{0 \ \big|\ t \in [4, 5]\right\}\ m/s^2}}`๐Ÿ”—

Acceleration function for the second interval when `t \in [4, 5]`

\begin{aligned} a_2 &= \frac{dv}{dt} \\[1pt] a_2 &= \frac{d}{dt} \left[14\right] \\[1pt] a_2 &= 0 \\[1pt] \end{aligned}

Interval 3: `\boldsymbol{\displaystyle{a_3 = \left\{4 \ \big|\ t \in [5, 8]\right\}\ m/s^2}}`๐Ÿ”—

Acceleration function for the third interval when `t \in [5, 8]`

\begin{aligned} a_3 &= \frac{dv}{dt} \\[1pt] a_3 &= \frac{d}{dt} \left[4t - 6\right] \\[1pt] a_3 &= 4\ m/s^2 \\[1pt] \end{aligned}

`\boldsymbol{a_{max} = a_3 = 4 \ m/s^2}`๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

A two-stage rocket is fired vertically from rest at `S = 0` with the acceleration as shown.

After `30\ s` the first stage, `A`, burns out and the second stage, `B`, ignites.

Plot the `vโ€“t` and `Sโ€“t` graphs which describe the motion of the second stage for `0 \le t \le 60\ s`.

Interval: `\boldsymbol{t \in [0, 30]}`๐Ÿ”—

First, calculate the acceleration function during the first interval.

Slope

\begin{aligned} slope &= \frac{\Delta a}{\Delta t} \\[1pt] slope &= \frac{12 - 0}{30 - 0} \\[1pt] slope &= 0.4 \\[1pt] \end{aligned}

`a` intercept

\begin{aligned} y &= mx + b \\[1pt] 12 &= (0.4)(30) + b \\[1pt] b &= 0 \\[1pt] \end{aligned}

`\boldsymbol{a_1 = \left(0.4t\right)\ m/s^2}`๐Ÿ”—

Acceleration function

\begin{aligned} y &= mx + b \\[1pt] a_1 &= 0.4t + 0 \\[1pt] a_1 &= 0.4t \\[1pt] \end{aligned}

`\boldsymbol{v_1 = \left(0.2t^2\right)\ m/s}`๐Ÿ”—

\begin{aligned} a_1 &= 0.4t \\[1pt] v_1 &= \int_0^t 0.4t \ dt \\[1pt] v_1 &= 0.2t^2 \\[1pt] \end{aligned}

`\boldsymbol{S_1 = \left(0.07t^3\right)\ m}`๐Ÿ”—

\begin{aligned} v_1 &= 0.2t^2 \\[1pt] S_1 &= \int_0^t 0.2t^2 \\[1pt] S_1 &= 0.07t^3 \\[1pt] \end{aligned}

Interval: `\boldsymbol{t \in [30, 60]}`๐Ÿ”—

Acceleration is constant at `24\ m/s^2` during this interval.

`\boldsymbol{a_2 = 24\ m/s^2}`๐Ÿ”—

\begin{aligned} a_2 &= 24 \\[1pt] \end{aligned}

`\boldsymbol{v_2 = \left(24t -540\right)\ m/s}`๐Ÿ”—

\begin{aligned} a_2 &= 24 \\[1pt] \frac{dv}{dt} &= 24 \\[1pt] \int_{v_1(30)}^{v_2} dv &= \int_{30}^t 24\ dt \\[1pt] v_2 - v_1(30) &= \Big[24t\Big]_{30}^t \\[1pt] v_2 - 180 &= 24t - 720 \\[1pt] v_2 &= 24t -540 \\[1pt] \end{aligned}

`\boldsymbol{S_2 = \left(12t^2 -540 t + 7200\right)\ m}`๐Ÿ”—

\begin{aligned} v_2 &= 24t -540 \\[1pt] \frac{dS}{dt} &= 24t -540 \\[1pt] \int_{S_1(30)}^{S_2} dS &= \int_{30}^t \left(24t -540\right)\ dt \\[1pt] S_2 - S_1(30) &= \left[12t^2 -540 t\right]_{30}^t \\[1pt] S_2 - 1800 &= 12t^2 -540 t - 12(30)^2 + 540(30) \\[1pt] S_2 &= 12t^2 -540 t + 7200 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

The `aโ€“S` graph for a rocket moving along a straight track has been experimentally determined.

If the rocket starts at `S = 0` when `v = 0`, determine its speed when it is at `S = 75\ ft`, and `125\ ft`, respectively.

Use Simpsonโ€™s rule with `n = 100` to evaluate `v` at `S = 125\ ft`.

Interval: `\boldsymbol{S \in [0, 100]}`๐Ÿ”—

Acceleration is constant `5` during this interval.

`\boldsymbol{v_1 = \sqrt{10S}}`๐Ÿ”—

Velocity function

\begin{aligned} a &= 5 \\[1pt] v \frac{dv}{dS} &= 5 \\[1pt] \int_0^{v_1} v\ dv &= \int_0^S 5\ dS \\[1pt] \left[\frac{v^2}{2}\right]_0^{v_1} &= \Big[5S\Big]_0^S \\[1pt] \frac{\left(v_1\right)^2}{2} &= 5S \\[1pt] v_1 &= \sqrt{10S} \\[1pt] \end{aligned}

`\boldsymbol{v_1(75) = 27.39\ ft/S}`๐Ÿ”—

\begin{aligned} v_1 &= \sqrt{10S} \\[1pt] v_1(75) &= \sqrt{10(75)} \\[1pt] v_1(75) &= 27.39\ ft/S \\[1pt] \end{aligned}

Interval: `\boldsymbol{S \in [100, S]}`๐Ÿ”—

Acceleration is variable during this interval.

`\boldsymbol{v_2(125) = 37.44\ ft/S}`๐Ÿ”—

\begin{aligned} a_2 &= 5 + 6 \left(\sqrt{S} - 10\right)^{5/3} \\[1pt] v \frac{dv}{dS} &= 5 + 6 \left(\sqrt{S} - 10\right)^{5/3} \\[1pt] \int_{v_1(100)}^{v_2(125)} v\ dv &= \int_{100}^{125} \left(5 + 6 \left(\sqrt{S} - 10\right)^{5/3}\right)\ dS \\[1pt] \left[\frac{v^2}{2}\right]_{31.62}^{v_2(125)} &= 201.032359 \color{green}\text{ //solved using Simpsonโ€™s rule} \\[1pt] \frac{\left(v_2(125)\right)^2}{2} - \frac{\left(31.62\right)^2}{2} &= 201.032359 \\[1pt] v_2(125) &= \sqrt{\left(2 \times 201.032359\right) + \left(31.62\right)^2} \\[1pt] v_2(125) &= 37.44\ ft/S \\[1pt] \end{aligned}

The `vโ€“t` graph for a particle moving through an electric field from one plate to another has the shape shown in the figure.

Where `t' = 0.2\ s` and `v_{max} = 10\ m/s`.

Draw the `Sโ€“t` and `aโ€“t` graphs for the particle.

When `\displaystyle{t = \frac{t'}{2}}` the particle is at `S = 0.5\ m`.

`\boldsymbol{\displaystyle{t_{mid} = 0.1}}`๐Ÿ”—

It's given that `t' = 0.2`, therefore `t_{mid}` is:

\begin{aligned} t_{mid} &= \frac{t'}{2} \\[1pt] t_{mid} &= \frac{0.2}{2} \\[1pt] t_{mid} &= 0.1 \\[1pt] \end{aligned}

Functions: When `\boldsymbol{\displaystyle{t \in \left[0, t_{mid}\right]}}`๐Ÿ”—

Motion functions during the first interval i.e. from the first plate till the mid of the electric field.

`\boldsymbol{\displaystyle{a_1 = 100\ m/s^2}}`๐Ÿ”—

First, calculate the constant acceleration until the mid of the electric field.

\begin{aligned} v &= u + at \\[1pt] v_{max} &= u + \left(a_1\right) \left(t_{mid}\right) \\[1pt] 10 &= 0 + \left(a_1\right)(0.1) \\[1pt] a_1 &= \frac{10}{0.1} \\[1pt] a_1 &= 100 \\[1pt] \end{aligned}

`\boldsymbol{v_1 = \left(100t\right)\ m/s}`๐Ÿ”—

\begin{aligned} v_1 &= \int_0^{t} a_1 \ dt \\[1pt] v_1 &= \int_0^{t} 100 \ dt \\[1pt] v_1 &= \Big[100t\Big]_0^t \\[1pt] v_1 &= 100t \\[1pt] \end{aligned}

`\boldsymbol{S_1 = \left(50t^2\right)\ m}`๐Ÿ”—

\begin{aligned} S_1 &= \int_0^t v_1 \ dt \\[1pt] S_1 &= \int_0^t 100t \ dt \\[1pt] S_1 &= \Big[50t^2\Big]_0^t \\[1pt] S_1 &= 50t^2 \\[1pt] \end{aligned}

Functions: When `\boldsymbol{\displaystyle{t \in \left[t_{mid}, t'\right]}}`๐Ÿ”—

Motion functions during the second interval i.e. from mid to the end plate.

`\boldsymbol{a_2 = -100\ m/s^2}`๐Ÿ”—

The particle is deceleration now.

\begin{aligned} a_2 &= -100 \\[1pt] \end{aligned}

`\boldsymbol{v_2 = \left(-100t + 20\right)\ m/s}`๐Ÿ”—

\begin{aligned} a_2 &= -100 \\[1pt] \frac{dv}{dt} &= -100 \\[1pt] \int_{v_{max}}^{v_2} dv &= \int_{t_{mid}}^t -100\ dt \\[1pt] v_2 - 10 &= \left[-100t\right]_{0.1}^t \\[1pt] v_2 &= -100t + 10 + 10 \\[1pt] v_2 &= -100t + 20 \\[1pt] \end{aligned}

`\boldsymbol{S_2 = \left(-50t^2 + 20t -1\right)\ m}`๐Ÿ”—

\begin{aligned} v_2 &= -100t + 20 \\[1pt] \frac{dS}{dt} &= -100t + 20 \\[1pt] \int_{0.5}^{S_2} dS &= \int_{t_{mid}}^t \left(-100t + 20\right)\ dt \\[1pt] S_2 - 0.5 &= \left[-50t^2 + 20t\right]_{0.1}^t \\[1pt] S_2 &= -50t^2 + 20t + 50(0.1)^2 - 20(0.1) + 0.5 \\[1pt] S_2 &= -50t^2 + 20t -1 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

The `vโ€“t` graph for a particle moving through an electric field from one plate to another has the shape shown in the figure.

The acceleration and deceleration that occur are constant and both have a magnitude of `4\ m/s^2`.

If the plates are spaced `200\ mm` apart, determine the maximum velocity `v_{max}` and the time `t'` for the particle to travel from one plate to the other.

Also draw the `Sโ€“t` graph.

When `\displaystyle{t = \frac{t'}{2}}` the particle is at `S = 100\ mm`.

Functions: When `\boldsymbol{\displaystyle{t \in \left[0, t_{mid}\right]}}`๐Ÿ”—

Motion functions from `t = 0` to `\displaystyle{t = \frac{t'}{2} = t_{mid}}`.

`\boldsymbol{a_1 = 4}`๐Ÿ”—

Acceleration function

\begin{aligned} a_1 &= 4 \\[1pt] \end{aligned}

`\boldsymbol{v_1 = 4t}`๐Ÿ”—

Velocity function

\begin{aligned} v_1 &= \int_0^t a_1 \ dt \\[1pt] v_1 &= 4t \\[1pt] \end{aligned}

`\boldsymbol{S_1 = 2t^2}`๐Ÿ”—

Displacement function

\begin{aligned} S_1 &= \int_0^t 4t \ dt \\[1pt] S_1 &= 2t^2 \\[1pt] \end{aligned}

Variables: Solve๐Ÿ”—

Solve for asked/required variables.

`\boldsymbol{t_{mid} = 0.22\ s}`๐Ÿ”—

Time `\left(t_{mid}\right)` taken to reach the middle of the electric field i.e. at `\displaystyle{\frac{200\ mm}{2} = \frac{0.2\ meters}{2}} = 0.1\ meters` is:

\begin{aligned} S_1 &= 2t^2 \\[1pt] 0.1 &= 2 \left(t_{mid}\right)^2 \\[1pt] t_{mid} &= \sqrt{\frac{0.1}{2}} \\[1pt] t_{mid} &= 0.22\ s \\[1pt] \end{aligned}

`\boldsymbol{t' = 0.45\ s}`๐Ÿ”—

Since the magnitudes of acceleration and deceleration are the same, time `\left(t'\right)` to reach the end plate is two times the time `\left(t_{mid}\right)` taken to reach the electric field:

\begin{aligned} t' &= 2 \times t_{mid} \\[1pt] t' &= 2 \times 0.22 \\[1pt] t' &= 0.45\ s \\[1pt] \end{aligned}

`\boldsymbol{v_{max} = 0.89\ m/s}`๐Ÿ”—

`v_{max}` is the velocity `v_1` of the particle at the middle of the electric field i.e. when time is `t_{mid}`.

\begin{aligned} v_1 &= 4t \\[1pt] v_{max} &= 4 \left(t_{mid}\right) \\[1pt] v_{max} &= 4 \left(0.22\right) \\[1pt] v_{max} &= 0.89\ m/s \\[1pt] \end{aligned}

`\boldsymbol{S_{mid} = 0.1\ m}`๐Ÿ”—

`S_{mid}` is the distance to middle of the electric field.

\begin{aligned} S_{mid} &= S_1(t_{mid}) \\[1pt] S_{mid} &= S_1(0.22) \\[1pt] S_{mid} &= 0.1\ m \\[1pt] \end{aligned}

Functions: When `\boldsymbol{\displaystyle{t \in \left[t_{mid}, t'\right]}}`๐Ÿ”—

Motion functions from `t = t_{mid}` to `\displaystyle{t = t' = 0.45\ s}`.

`\boldsymbol{a_2 = -4\ m/s^2}`๐Ÿ”—

Acceleration function

\begin{aligned} a_2 &= -4 \\[1pt] \end{aligned}

`\boldsymbol{v_2 = -4t + 1.79}`๐Ÿ”—

Velocity function

\begin{aligned} a_2 &= -4 \\[1pt] \frac{dv}{dt} &= -4 \\[1pt] \int_{v_{max}}^{v_2} dv &= \int_{t_{mid}}^{t} -4\ dt \\[1pt] v_2 - v_{max} &= \Big[-4t\Big]_{t_{mid}}^{t} \\[1pt] v_2 - v_{max} &= -4t + 4\left(t_{mid}\right) \\[1pt] v_2 - 0.89 &= -4t + 4\left(0.22\right) \\[1pt] v_2 &= -4t + 1.79 \\[1pt] \end{aligned}

`\boldsymbol{S_2 = -2t^2 + 1.79t -0.2}`๐Ÿ”—

Displacement function

\begin{aligned} v_2 &= -4t + 1.79 \\[1pt] \frac{dS}{dt} &= -4t + 1.79 \\[1pt] \int_{S_{mid}}^{S_2} dS &= \int_{t_{mid}}^{t} \left(-4t + 1.79\right)\ dt \\[1pt] S_2 - S_{mid} &= \left[-2t^2 + 1.79t\right]_{t_{mid}}^{t} \\[1pt] S_2 &= -2t^2 + 1.79t + 2 \left(0.22\right)^2 - 1.79(0.22) + 0.1 \\[1pt] S_2 &= -2t^2 + 1.79t -0.2 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

The motion of a jet plane just after landing on a runway is described by the `aโ€“t` graph.

Determine the time `t'` when the jet plane stops.

Construct the `vโ€“t` and `Sโ€“t` graphs for the motion.

Here `S = 0`, and `v = 300\ ft/s` when `t = 0`.

Functions: When `\boldsymbol{t \in [0, 10]}`๐Ÿ”—

Functions of motion when `t \in [0, 10]`

`\boldsymbol{a_1 = 0}`๐Ÿ”—

For the first `10\ seconds` the acceleration is `0`.

\begin{aligned} a_1 &= 0 \\[1pt] \end{aligned}

`\boldsymbol{v_1 = 91.44\ m/s}`๐Ÿ”—

Initial velocity at `t = 0` is given to be `300\ ft/s` which is `91.44\ m/s`.

Since there is no acceleration, velocity is constant throughout this interval.

\begin{aligned} v_1 &= 91.44 \\[1pt] \end{aligned}

`\boldsymbol{S_1 = \left(91.44 t\right)\ m}`๐Ÿ”—

\begin{aligned} S_1 &= \int_0^t 91.44 \ ft \\[1pt] S_1 &= 91.44 t \\[1pt] \end{aligned}

Functions: When `\boldsymbol{t \in [10, 20]}`๐Ÿ”—

Functions of motion when `t \in [10, 20]`

`\boldsymbol{a_2 = \left(t - 30\right)\ m/s^2}`๐Ÿ”—

Slope of acceleration graph during the interval `t \in [10, 20]`

\begin{aligned} slope &= \frac{\Delta a}{\Delta t} \\[1pt] slope &= \frac{-10 - (-20)}{20 - 10} \\[1pt] slope &= \frac{10}{10} \\[1pt] slope &= 1 \\[1pt] \end{aligned}

`y` intercept

\begin{aligned} y &= mx + b \\[1pt] -10 &= 1(20) + b \\[1pt] b &= -30 \\[1pt] \end{aligned}

Acceleration function

\begin{aligned} a_2 &= mt + b \\[1pt] a_2 &= (1)t - 30 \\[1pt] a_2 &= \left(t - 30\right)\ m/s^2 \\[1pt] \end{aligned}

`\boldsymbol{\displaystyle{v_2 = \left(\frac{t^2}{2} - 30t + 550\right)\ m/s}}`๐Ÿ”—

Velocity function

\begin{aligned} a_2 &= t - 30 \\[1pt] \frac{dv}{dt} &= t - 30 \\[1pt] \int_{300}^{v_2} dv &= \int_{10}^t \left(t - 30\right)\ dt \\[1pt] v_2 - 300 &= \left[\frac{t^2}{2} - 30t\right]_{10}^t \\[1pt] v_2 &= \left(\frac{t^2}{2} - 30t + 550\right)\ m/s \\[1pt] \end{aligned}

`\boldsymbol{\displaystyle{S_2 = \left(\frac{t^3}{6} - 15t^2 + 550t -3252.27\right)\ m}}`๐Ÿ”—

Displacement at `t = 10`

\begin{aligned} \left(S_2\right)_{initial} &= S_1(10) \\[1pt] \left(S_2\right)_{initial} &= 914.4\ m \\[1pt] \end{aligned}

Displacement function

\begin{aligned} v_2 &= \frac{t^2}{2} - 30t + 550 \\[1pt] \frac{dS}{dt} &= \frac{t^2}{2} - 30t + 550 \\[1pt] \int_{\left(S_2\right)_{initial}}^{S_2} dS &= \int_{10}^t \left(\frac{t^2}{2} - 30t + 550\right)\ dt \\[1pt] S_2 - 914.4 &= \left[\frac{t^3}{6} - 15t^2 + 550t\right]_{10}^t \\[1pt] S_2 &= \frac{t^3}{6} - 15t^2 + 550t - \frac{10^3}{6} + 15(10)^2 - 550(10) + 914.4 \\[1pt] S_2 &= \left(\frac{t^3}{6} - 15t^2 + 550t -3252.27\right)\ m \\[1pt] \end{aligned}

Functions: When `\boldsymbol{t \in [20, t']}`๐Ÿ”—

Functions of motion when `t \in [20, t']`

`\boldsymbol{a_3 = -10\ m/s^2}`๐Ÿ”—

Acceleration function

\begin{aligned} a_3 &= -10\ m/s^2 \\[1pt] \end{aligned}

`\boldsymbol{v_3 = \left(-10t + 350\right)\ m/s}`๐Ÿ”—

Initial velocity of this interval

\begin{aligned} \left(v_3\right)_{initial} &= v_2(20) \\[1pt] \left(v_3\right)_{initial} &= 150\ m/s \\[1pt] \end{aligned}

Velocity function

\begin{aligned} a_3 &= -10 \\[1pt] \frac{dv}{dt} &= -10 \\[1pt] \int_{\left(v_3\right)_{initial}}^{v_3} dv &= \int_{20}^t -10\ dt \\[1pt] v_3 - 150 &= \Big[-10t\Big]_{20}^t \\[1pt] v_3 &= -10t + 200 + 150 \\[1pt] v_3 &= \left(-10t + 350\right)\ m/s \\[1pt] \end{aligned}

`\boldsymbol{\displaystyle{S_3 = \left(-5t^2 + 350t -1918.93\right)\ m}}`๐Ÿ”—

Initial displacement of this interval

\begin{aligned} \left(S_3\right)_{initial} &= S_2(20) \\[1pt] \left(S_3\right)_{initial} &= 3081.07\ m \\[1pt] \end{aligned}

Displacement function

\begin{aligned} v_3 &= \left(-10t + 350\right)\ m/s \\[1pt] \frac{dS}{dt} &= -10t + 350 \\[1pt] \int_{\left(S_3\right)_{initial}}^{S_3} dS &= \int_{20}^{t} \left(-10t + 350\right)\ dt \\[1pt] S_3 - 3081.07 &= \left[-5t^2 + 350t\right]_{20}^{t} \\[1pt] S_3 &= -5t^2 + 350t + 5(20)^2 - 350(20) + 3081.07 \\[1pt] S_3 &= -5t^2 + 350t -1918.93 \\[1pt] \end{aligned}

`\boldsymbol{t' = 35s}`๐Ÿ”—

The jet will come to a stop when `v_3 = 0`.

\begin{aligned} v_3 &= -10t + 350 \\[1pt] 0 &= -10t + 350 \\[1pt] t &= 35s = t' \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph (meters/second)๐Ÿ”—

`\boldsymbol{vโ€“t}` graph (meters/second)๐Ÿ”—

The velocity of a car is plotted as shown.

Determine the total distance the car moves until it stops `\left(t = 80\ s\right)`.

Construct the `aโ€“t` graph.

Function when `\boldsymbol{t \in [0, 40]}`๐Ÿ”—

Velocity function

\begin{aligned} v_1 &= 10 \\[1pt] \end{aligned}

Displacement function

\begin{aligned} S_1 &= \int_0^t 10\ dt \\[1pt] S_1 &= 10t \\[1pt] \end{aligned}

Acceleration function

\begin{aligned} a_1 &= \frac{d}{dt} \left[10\right] \\[1pt] a_1 &= 0 \\[1pt] \end{aligned}

Function when `\boldsymbol{t \in [40, 80]}`๐Ÿ”—

Slope

\begin{aligned} m &= \frac{\Delta v}{\Delta t} \\[1pt] m &= \frac{0 - 10}{80 - 40} \\[1pt] m &= -0.25 \\[1pt] \end{aligned}

`y` intercept

\begin{aligned} y &= mx + b \\[1pt] 0 &= -0.25(80) + b \\[1pt] b &= 20 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v_2 &= mt + b \\[1pt] v_2 &= -0.25 t + 20 \\[1pt] \end{aligned}

Displacement function

\begin{aligned} S_2 &= \int_0^t \left(-0.25 t + 20\right)\ dt \\[1pt] S_2 &= -0.125 t^2 + 20 t \\[1pt] \end{aligned}

Acceleration function

\begin{aligned} a_2 &= slope = m \\[1pt] a_2 &= -0.25 \\[1pt] \end{aligned}

`\boldsymbol{S_{total} = 600\ m}`๐Ÿ”—

\begin{aligned} S_{total} &= S_1(40) + \left(S_2(80) - S_2(40)\right) \\[1pt] S_{total} &= 400 + \left(800 - 600\right) \\[1pt] S_{total} &= 600\ m \\[1pt] \end{aligned}

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

The elevator starts from rest at the first floor of the building.

It can accelerate at `5\ ft/s^2` and then decelerate at `2\ ft/s^2`.

Determine the shortest time it takes to reach a floor `40\ ft` above the ground.

The elevator starts from rest and then stops.

Draw the `aโ€“t, vโ€“t` and `Sโ€“t` graphs for the motion.

Accelerating: Functions๐Ÿ”—

Functions for when the elevator is accelerating.

Acceleration function

\begin{aligned} a_1 &= 5 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v &= u + at \\[1pt] v_1 &= 0 + (5)t \\[1pt] v_1 &= 5t \\[1pt] \end{aligned}

Position function

\begin{aligned} S &= ut + \frac{1}{2}at^2 \\[1pt] S_1 &= (0)t + \frac{1}{2}(5)t^2 \\[1pt] S_1 &= 2.5t^2 \\[1pt] \end{aligned}

Time: Variables๐Ÿ”—

Let's say `t_d` is the time the elevator starts decelerating.

Therefore, the initial velocity of the elevator when it starts decelerating is `v_1(t_d) = 5t_d`.

Express `t` in terms of `t_d` using the equation of motion evaluating for when the elevator is decelerating

\begin{aligned} v &= u + at \\[1pt] 0 &= 5t_d - 2\left(t - t_d\right) \color{green}\text{ // substituting deceleration values}\\[1pt] 0 &= 5t_d - 2t + 2t_d \\[1pt] 0 &= 7t_d - 2t \\[1pt] t &= \frac{7}{2}t_d \\[1pt] t &= 3.5t_d \\[1pt] \end{aligned}

Position function for when the elevator is decelerating

\begin{aligned} S &= ut + \frac{1}{2}at^2 \\[1pt] S_2 &= \left(5t_d\right)\left(t - t_d\right) + \frac{1}{2}(-2)\left(t - t_d\right)^2 \\[1pt] S_2 &= 5t_d\left(t - t_d\right) - \left(t - t_d\right)^2 \color{green}\text{ //position function 1} \\[1pt] \end{aligned}

`\boldsymbol{t_d = 2.14\ seconds}`๐Ÿ”—

Given that the total displacement is `40\ ft`, solve for `t_d`.

\begin{aligned} S_1(t_d) + S_2(t) &= 40 \\[1pt] 2.5 \left(t_d\right)^2 + 5t_d\left(t - t_d\right) - \left(t - t_d\right)^2 &= 40 \\[1pt] 2.5 \left(t_d\right)^2 + 5t_d\left(3.5t_d - t_d\right) - \left(3.5t_d - t_d\right)^2 &= 40 \color{green}\text{ //substituted } t = 3.5t_d\\[1pt] 8.75\left(t_d\right)^2 &= 40 \\[1pt] t_d &= 2.14\ s \\[1pt] \end{aligned}

The elevator is decelerating for `\displaystyle{\boxed{2.14\ seconds}}`.

`\boldsymbol{t = 7.48\ seconds}`๐Ÿ”—

\begin{aligned} t &= 3.5t_d \\[1pt] t &= 3.5 \left(2.14\right) \color{green}\text{ //substituted } t_d = 2.14\ s \\[1pt] t &= 7.48\ s \\[1pt] \end{aligned}

The shortest time it takes to reach `40\ ft` is `\displaystyle{\boxed{7.48\ seconds}}`.

Decelerating: Functions๐Ÿ”—

Functions for when the elevator is decelerating.

Acceleration function

\begin{aligned} a_2 &= -2 \\[1pt] \end{aligned}

Position function

\begin{aligned} S_2 &= 5t_d\left(t - t_d\right) - \left(t - t_d\right)^2 \color{green}\text{ // position function 1} \\[1pt] S_2 &= 5(2.14)\left(t - 2.14\right) - \left(t - 2.14\right)^2 \color{green}\text{ //position function 2} \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v &= u + at \\[1pt] v_2 &= v_1(t_d) + (-2)t \\[1pt] v_2 &= 10.69 - 2(t - 2.14) \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

An airplane starts from rest, travels `5000\ ft` down a runway, and after uniform acceleration, takes off with a speed of `162\ mi/h`.

It then climbs in a straight line with a uniform acceleration of `3\ ft/s^2` until it reaches a constant speed of `220\ mi/h`.

Draw the `Sโ€“t`, `vโ€“t` and `aโ€“t` graphs that describe the motion.

`\boldsymbol{v_{takeโ€“off} = 237.6\ ft/s}`๐Ÿ”—

\begin{aligned} v_{takeโ€“off} &= 162\ mi/h \\[1pt] v_{takeโ€“off} &= \left(\frac{5280 \times 162}{3600}\right)\ ft/s \\[1pt] v_{takeโ€“off} &= 237.6\ ft/s \color{green}\text{ //take off speed} \\[1pt] \end{aligned}

`\boldsymbol{v_{climb} = 322.67\ ft/s }`๐Ÿ”—

\begin{aligned} v_{climb} &= 220\ mi/h \\[1pt] v_{climb} &= \left(\frac{5280 \times 220}{3600}\right)\ ft/s \\[1pt] v_{climb} &= 322.67\ ft/s \color{green}\text{ //climb speed} \\[1pt] \end{aligned}

Runway: Functions๐Ÿ”—

Functions that describe the motion on the runway.

Acceleration function

\begin{aligned} v^2 &= u^2 + 2aS \\[1pt] 237.6^2 &= 0^2 + 2a(5000) \\[1pt] a_{runway} &= \frac{237.6^2}{10000} \\[1pt] a_{runway} &= 5.65\ ft/s^2 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v &= \int_0^t a\ dt \\[1pt] v_{runway} &= \int_0^t 5.65\ dt \\[1pt] v_{runway} &= 5.65t \\[1pt] \end{aligned}

Displacement function

\begin{aligned} S &= \int_0^t v\ dt \\[1pt] S_{runway} &= \int_0^t 5.65t\ dt \\[1pt] S_{runway} &= 2.82t^2 \\[1pt] \end{aligned}

`\boldsymbol{t_{takeโ€“off} = 42.09s}`๐Ÿ”—

`t_{takeโ€“off}` is the time on the runway or time until take off.

\begin{aligned} v &= u + at \\[1pt] v_{takeโ€“off} &= 0 + \left(a_{runway}\right) \left(t_{takeโ€“off}\right) \\[1pt] 237.6 &= 0 + \left(5.65\right) \left(t_{takeโ€“off}\right) \\[1pt] t_{takeโ€“off} &= 42.09s \\[1pt] \end{aligned}

Climb: Functions๐Ÿ”—

Functions that describe the motion after the take off/during the climb.

Acceleration function

\begin{aligned} a_{climb} &= 3\ ft/s^2 \\[1pt] \end{aligned}

Displacement function

\begin{aligned} S &= ut + \frac{1}{2}at^2 \\[1pt] S_{climb} &= \left(v_{takeโ€“off}\right) t + \frac{1}{2}(3)t^2 \\[1pt] S_{climb} &= 237.6(t - 42.09) + 1.5(t - 42.09)^2 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v &= u + at \\[1pt] v_{climb} &= v_{takeโ€“off} + a \left(t - t_{takeโ€“off}\right) \\[1pt] v_{climb} &= 237.6 + 3(t - 42.09) \\[1pt] \end{aligned}

`\boldsymbol{t_{climb} = 28.36 s}`๐Ÿ”—

`t_{climb}` is the time till acceleration is active (post take off/during the climb), until constant speed is achieved.

\begin{aligned} v &= u + at \\[1pt] v_{climb} &= v_{takeโ€“off} + (3)t_{climb} \\[1pt] 322.67 &= 237.6 + (3)t_{climb} \\[1pt] t_{climb} &= 28.36 s \\[1pt] \end{aligned}

`\boldsymbol{\Delta S = 12943.34\ ft}`๐Ÿ”—

Total distance travelled

\begin{aligned} \Delta S &= S_{runway}(t_{takeโ€“off}) + S_{climb}(t_{takeโ€“off} + t_{climb}) \\[1pt] \Delta S &= 5000 + 7943.34 \\[1pt] \Delta S &= 12943.34\ ft \\[1pt] \end{aligned}

`\boldsymbol{t_{total} = 70.44s}`๐Ÿ”—

`t_{total}` is the total time the airplane was in motion till constant speed is achieved during the climb.

\begin{aligned} t_{total} &= t_{takeโ€“off} + t_{climb} \\[1pt] t_{total} &= 42.09 + 28.36 \\[1pt] t_{total} &= 70.44s \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

If the position of a particle is defined by `\displaystyle{S = \left[2\sin \left(\frac{\pi t}{5}\right) + 4\right]\ m}`, where `t` is in seconds, construct the `Sโ€“t`, `vโ€“t` and `aโ€“t` graphs for `0 \le t \le 10s`.

Functions๐Ÿ”—

Velocity function

\begin{aligned} v &= \frac{dS}{dt} \\[1pt] v &= \frac{d}{dt} \left[2\sin \left(\frac{\pi t}{5}\right) + 4\right] \\[1pt] v &= \frac{2\pi}{5}\cos \left(\frac{\pi t}{5}\right) \\[1pt] \end{aligned}

Acceleration function

\begin{aligned} a &= \frac{dv}{dt} \\[1pt] a &= \frac{d}{dt} \left[\frac{2\pi}{5}\cos \left(\frac{\pi t}{5}\right)\right] \\[1pt] a &= \frac{-2\pi^2}{25}\sin \left(\frac{\pi t}{5}\right) \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

A particle starts from `S = 0` and travels along a straight line with a velocity `v = \left(t^2 - 4t + 3\right)\ m/s`, where `t` is in seconds.

Construct the `vโ€“t` and `aโ€“t` graphs for the time interval `0 \le t \le 4s`.

Functions๐Ÿ”—

\begin{aligned} v &= t^2 - 4t + 3 \\[1pt] S &= \frac{t^3}{3} - 2t^2 + 3t \\[1pt] a &= 2t - 4 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

Two rockets start from rest at the same elevation.

Rocket `A` accelerates vertically at `20\ m/s^2` for `12 s` and then maintains a constant speed.

Rocket `B` accelerates at `15\ m/s^2` until reaching a constant speed of `150\ m/s`.

Construct the `aโ€“t, vโ€“t` and `Sโ€“t` graphs for each rocket until `t = 20\ s`.

What is the distance between the rockets when `t = 20\ s`?

Rocket `\boldsymbol{A}`: When `\boldsymbol{t \in [0, 12]}`๐Ÿ”—

Acceleration function

\begin{aligned} a_{A_1} &= 20 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v_{A_1} &= u + at \\[1pt] v_{A_1} &= 0 + (20)t \\[1pt] v_{A_1} &= 20t \\[1pt] \end{aligned}

Position function

\begin{aligned} S_{A_1} &= ut + \frac{1}{2}at^2 \\[1pt] S_{A_1} &= (0)t + \frac{1}{2}(20)t^2 \\[1pt] S_{A_1} &= 10t^2 \\[1pt] \end{aligned}

Final velocity when `t = 12s`

\begin{aligned} v_{A_1}(12) &= 20 \times 12 \\[1pt] v_{A_1}(12) &= 240 \\[1pt] \end{aligned}

Rocket `\boldsymbol{A}`: When `\boldsymbol{t \ge 12}`๐Ÿ”—

Acceleration function

\begin{aligned} a_{A_2} &= 0 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v_{A_2} &= u + at \\[1pt] v_{A_2} &= v_{A_1}(12) + (0)t \\[1pt] v_{A_2} &= 240 \\[1pt] \end{aligned}

Position function

\begin{aligned} S_{A_2} &= ut + \frac{1}{2}at^2 \\[1pt] S_{A_2} &= 240(t - 12) + \frac{1}{2}(0)(t - 12)^2 \\[1pt] S_{A_2} &= 240t - 2880 \\[1pt] \end{aligned}

Rocket `\boldsymbol{B}`: Reaches constant velocity at `\boldsymbol{t = 10s}`๐Ÿ”—

\begin{aligned} v &= u + at \\[1pt] 150 &= 0 + (15)t \\[1pt] t &= 10s \\[1pt] \end{aligned}

Rocket `\boldsymbol{B}`: When `\boldsymbol{t \in [0, 10]}`๐Ÿ”—

Acceleration function

\begin{aligned} a_{B_1} &= 15 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v_{B_1} &= u + at \\[1pt] v_{B_1} &= 0 + (15)t \\[1pt] v_{B_1} &= 15t \\[1pt] \end{aligned}

Position function

\begin{aligned} S_{B_1} &= ut + \frac{1}{2}at^2 \\[1pt] S_{B_1} &= (0)t + \frac{1}{2}(15)t^2 \\[1pt] S_{B_1} &= 7.5t^2 \\[1pt] \end{aligned}

Rocket `\boldsymbol{B}`: When `\boldsymbol{t \ge 10}`๐Ÿ”—

Acceleration function

\begin{aligned} a_{B_2} &= 0 \\[1pt] \end{aligned}

Velocity function

\begin{aligned} v_{B_2} &= u + at \\[1pt] v_{B_2} &= v_{B_1}(10) + (0)t \\[1pt] v_{B_2} &= 150 \\[1pt] \end{aligned}

Position function

\begin{aligned} S_{B_2} &= ut + \frac{1}{2}at^2 \\[1pt] S_{B_2} &= (150)(t - 10) + \frac{1}{2}(0)(t - 10)^2 \\[1pt] S_{B_2} &= 150t - 1500 \\[1pt] \end{aligned}

`\boldsymbol{\Delta S = 1110\ m = 1.11\ km}`๐Ÿ”—

Distance between the rockets

\begin{aligned} \Delta S &= \left(\text{Final position of Rocket A}\right) - \left(\text{Final position of Rocket B}\right) \\[1pt] \Delta S &= \left(S_{A_1}(12) + S_{A_2}(20)\right) - \left(S_{B_1}(10) + S_{B_2}(20)\right) \\[1pt] \Delta S &= \left(1440 + 1920\right) - \left(750 + 1500\right) \\[1pt] \Delta S &= 3360 - 2250 \\[1pt] \Delta S &= 1110\ m = 1.11\ km \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

The `Sโ€“t` graph for a train has been experimentally determined.

From the data, construct the `vโ€“t` and `aโ€“t` graphs for the motion; `0 \le t \le 40\ s`.

For `0 \le t \le 30 \ s `, the curve is `S = \left(0.4t^2\right)\ m`, and then it becomes straight for `t \ge 30\ s`.

Functions when `\boldsymbol{t \in [0, 30]}`๐Ÿ”—

\begin{aligned} S_1 &= 0.4t^2 \\[1pt] v_1 &= \frac{d}{dt} \left[0.4t^2\right] = 0.8t \\[1pt] a_1 &= \frac{d}{dt} \left[0.8t\right] = 0.8 \\[1pt] \end{aligned}

Functions when `\boldsymbol{t \in [30, 40]}`๐Ÿ”—

\begin{aligned} v_2 &= \frac{\Delta S}{\Delta t} = \frac{600 - 360}{400 - 30} = 24 \\[1pt] a_2 &= \frac{d}{dt} \left[24\right] = 0 \\[1pt] \end{aligned}

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

A freight train starts from rest and travels with a constant acceleration of `0.5\ ft/s^2`.

After a time `t'` it maintains a constant speed so that when `t = 160\ s` it has traveled `2000\ ft`.

Determine the time `t'` and draw the `vโ€“t` graph for the motion.

First interval: When acceleration is constant๐Ÿ”—

Functions for when the acceleration is constant at `0.5\ ft/s^2`

\begin{aligned} a_1 &= 0.5 \\[1pt] v_1 &= \int_0^t 0.5\ dt = 0.5t \\[1pt] S_1 &= \int_0^t 0.5t\ dt = 0.25t^2 \\[1pt] \end{aligned}

Total distance covered

\begin{aligned} S_1 &= 0.25t^2 \\[1pt] S_1(t') &= 0.25t'^2 \\[1pt] \end{aligned}

Second interval: When speed is constant๐Ÿ”—

Position function when speed is constant i.e. acceleration is `zero`

The initial velocity `u` here is the final velocity of the first interval i.e. `v_1(t') = 0.5t'`

\begin{aligned} S_2 &= ut + \frac{1}{2}at^2 \\[1pt] S_2 &= (0.5t')t + \frac{1}{2}(0)t^2 \\[1pt] S_2 &= 0.5t't \\[1pt] \end{aligned}

Total distance covered

\begin{aligned} S_2(160 - t') &= (0.5t')(160 - t') \\[1pt] S_2(160 - t') &= 80t' - 0.5t'^2 \\[1pt] \end{aligned}

`\boldsymbol{t' = 27.34\ s}`๐Ÿ”—

Solve for total distance travelled to find `t'`

\begin{aligned} S_{total} &= S_1(t') + S_2(160 - t') \\[1pt] 2000 &= 0.25t'^2 + 80t' - 0.5t'^2 \\[1pt] 2000 &= -0.25t'^2 + 80t' \\[1pt] 0.25t'^2 - 80t' + 2000 &= 0 \\[1pt] \hline t' &= 27.34\ s\ \textcolor{lime}{\checkmark} \color{green}\text{ //select this so } t \text{ is within } 160s \\[1pt] t' &= 292.66\ s \\[1pt] \end{aligned}

`\boldsymbol{vโ€“t}` graph๐Ÿ”—

The constant velocity `u` in the second interval is the final velocity of the first interval i.e. velocity at `t'`

\begin{aligned} v_1 &= 0.5t \\[1pt] v_1(t') &= 0.5t' \\[1pt] v_1(27.34) &= 13.67\ ft/s \\[1pt] \end{aligned}

Graph


F12-14๐Ÿ”—

The dragster starts from rest and has a velocity described by the graph.

Construct the `Sโ€“t` graph during the time interval `0 \le t \le 15\ s`.

Also, determine the total distance traveled during this time interval.

`\boldsymbol{\displaystyle{S_1 = \left\{15t^2 \ \big|\ t \in [0, 5]\right\}}}`๐Ÿ”—

\begin{aligned} v &= 30t \\[1pt] S_1 &= \int_0^t 30t\ dt \\[1pt] S_1 &= 15t^2 \\[1pt] \end{aligned}

`\boldsymbol{\displaystyle{S_2 = \left\{-7.5t^2 + 225t -562.5 \ \big|\ t \in (5, 15]\right\}}}`๐Ÿ”—

Position when `t = 5`

\begin{aligned} S_1 &= 15t^2 \\[1pt] S_1(5) &= 15(5)^2 \\[1pt] S_1(5) &= 375\ m \\[1pt] \end{aligned}

Velocity function for the second interval

\begin{aligned} v &= -15t + 225 \\[1pt] \int_{375}^S dS &= \int_5^t \left(-15t + 225\right)\ dt \\[1pt] S_2 - 375 &= \left[-7.5t^2 + 225t\right]_5^t \\[1pt] S_2 - 375 &= -7.5t^2 + 225t + 7.5(5)^2 - 225(5) \\[1pt] S_2 &= -7.5t^2 + 225t -562.5 \\[1pt] \end{aligned}

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

Area under the curve `\boldsymbol{= 1125\ m}`๐Ÿ”—

\begin{aligned} Area &= \left| S_1(5) - S_1(0)\right| + \left|S_2(15) - S_1(5)\right| \\[1pt] Area &= \left| 375 - 0\right| + \left|1125 - 375\right| \\[1pt] Area &= 1125\ m \\[1pt] \end{aligned}

F12-13๐Ÿ”—

The dragster starts from rest and has an acceleration described by the graph.

Construct the `vโ€“t` graph for the time interval `0 \le t \le t'` where `t'` is the time for the car to come to rest.

Acceleration function๐Ÿ”—

`` a(t) = \left\{ \begin{array}{cl} 20 & if \ t \in [0, 5] \\ -10 & if \ t \in (5, t'] \end{array} \right. ``

`\boldsymbol{v = 20t, t \in [0, 5]}`๐Ÿ”—

\begin{aligned} a &= 20 \\[1pt] \frac{dv}{dt} &= 20 \\[1pt] \int_0^v dv &= \int_0^t 20\ dt \\[1pt] v &= 20t, t \in [0, 5] \color{green}\text{ //first interval} \\[1pt] \end{aligned}

`\boldsymbol{v = 150 - 10t, t \in (5, t']}`๐Ÿ”—

Velocity at `t = 5`

\begin{aligned} v &= 20t, t \in [0, 5] \color{green}\text{ //first interval} \\[1pt] v(5) &= 100 \\[1pt] \end{aligned}

Velocity function for second interval

\begin{aligned} a &= -10 \\[1pt] \frac{dv}{dt} &= -10 \\[1pt] \int_{100}^{v} dv &= \int_5^{t} -10\ dt \\[1pt] v - 100 &= -10t + 50 \\[1pt] v &= 150 - 10t \color{green}\text{ //second interval} \\[1pt] \end{aligned}

Time `t'` when the car comes to rest

\begin{aligned} 0 &= 150 - 10t \color{green}\text{ //second interval} \\[1pt] t &= 15\ seconds = t' \\[1pt] \end{aligned}

`\boldsymbol{vโ€“t}` graph๐Ÿ”—


F12-12๐Ÿ”—

The sports car travels along a straight road such that its acceleration is described by the graph.

Construct the `vโ€“S` graph for the same interval and specify the velocity of the car when `S = 10\ m` and `S = 15\ m`.

`\boldsymbol{v(10) = 10\ m/s}`๐Ÿ”—

\begin{aligned} a &= S \\[1pt] v \frac{dv}{dS} &= S \\[1pt] \int_0^v v\ dv &= \int_0^{S} S\ dS \\[1pt] \frac{v^2}{2} &= \frac{S^2}{2} \\[1pt] v &= S \color{green}\text{ //velocity function for first interval} \\[1pt] \\[1pt] v(10) &= 10\ m/s \\[1pt] \end{aligned}

`\boldsymbol{v(15) = 14.14\ m/s}`๐Ÿ”—

\begin{aligned} a &= 10 \\[1pt] v \frac{dv}{dS} &= 10 \\[1pt] \int_{10}^v v \ dv &= \int_{10}^S 10\ dS \\[1pt] \left[\frac{v^2}{2}\right]_{10}^v &= \Big[10S\Big]_{10}^S \\[1pt] \frac{v^2}{2} - 50 &= 10S - 100 \\[1pt] v &= \sqrt{20S - 100} \color{green}\text{ //velocity function for second interval} \\[1pt] v(15) &= \sqrt{20(15) - 100} \\[1pt] v(15) &= 14.14\ m/s \\[1pt] \end{aligned}

`\boldsymbol{vโ€“S}` graph๐Ÿ”—


F12-11๐Ÿ”—

A bicycle travels along a straight road where its velocity is described by the `vโ€“S` graph.

Construct the `aโ€“S` graph for the same interval.

`\boldsymbol{aโ€“S}` graph๐Ÿ”—

\begin{aligned} a &= v \frac{dv}{dS} \\[1pt] a &= 0.25S \frac{d}{dS} \left[0.25S\right] \\[1pt] a &= 0.25S \times 0.25 \\[1pt] a &= 0.0625S \\[1pt] \end{aligned}

F12-10๐Ÿ”—

A van travels along a straight road with a velocity described by the graph.

Construct the `Sโ€“t` and `aโ€“t` graphs during the same period.

Take `S = 0` when `t = 0`.

`\boldsymbol{Sโ€“t}` graph๐Ÿ”—

\begin{aligned} v &= -4t + 80 \\[1pt] \frac{dS}{dt} &= -4t + 80 \\[1pt] \int_0^S dS &= \int_0^t \left(-4t + 80\right)\ dt \\[1pt] S &= -2t^2 + 80t \\[1pt] \end{aligned}

`\boldsymbol{aโ€“t}` graph๐Ÿ”—

\begin{aligned} a &= \frac{d}{dt} \left[-4t + 80\right] \\[1pt] a &= -4\ ft/s^2 \\[1pt] \end{aligned}

The particle travels along a straight track such that its position is described by the `Sโ€“t` graph.

Construct the `vโ€“t` graph for the same time interval.

Velocity functions๐Ÿ”—

Velocity when `x \in [0, 6]`

\begin{aligned} v_a &= \frac{d}{dt} \left[0.5t^3\right] \\[1pt] v_a &= 1.5t^2 \\[1pt] \end{aligned}

Velocity when `x \in (6, 10]`

\begin{aligned} v_b &= \frac{d}{dt} \left[108\right] \\[1pt] v_b &= 0 \\[1pt] \end{aligned}

`\boldsymbol{vโ€“t}` graph๐Ÿ”—