`\vec{\textcolor{#dac83c}{F}}_{\textcolor{#1ba7ae}{AB}_\textcolor{#f90bec}{C}}` is a force vector `\color{#dac83c}{F}`, along member `\textcolor{#1ba7ae}{AB}`, acting at joint `\textcolor{#f90bec}{C}` (uppercase subscript).
`\vec{\textcolor{#dac83c}{F}}_{\textcolor{#1ba7ae}{AB}_\textcolor{#f90bec}{x}}` is a force vector `\color{#dac83c}{F}`, along member `\textcolor{#1ba7ae}{AB}`, acting along the axis `\textcolor{#f90bec}{x}` (lowercase subscript).
`\vec{\textcolor{#dac83c}{F}}_{\textcolor{#f90bec}{C}_\textcolor{#1ba7ae}{AB}}` is a force vector `\color{#dac83c}{F}`, acting at joint `\textcolor{#f90bec}{C}`, on member `\textcolor{#1ba7ae}{AB}`.
The space truss supports a force `\vec F = \left\{600\hat i + 450\hat j - 750\hat k\right\}\ lb`.
Determine the force in each member, and state if the members are in tension or compression.
The space truss supports a force `\vec F = \left\{-500\hat i + 600\hat j + 400\hat k\right\}\ lb`.
Determine the force in each member, and state if the members are in tension or compression.
Determine the force in each member of the space truss and state if the members are in tension or compression.
The truss is supported by ball-and-socket joints at `A, B, C,\ and\ D`.
Determine the force in each member of the space truss and state if the members are in tension or compression.
Hint: The support reaction at `E` acts along member `EB`. Why?
Solve the two equations.
\begin{aligned} \left[ \begin{array}{rr} 0.6 & -0.6 \\ -0.8 & -0.8 \\ \end{array} \right] \begin{bmatrix} F_{AD} \\ F_{AC} \\ \end{bmatrix} &= \left[ \begin{array}{r} 0 \\ 2.4 \\ \end{array} \right] \\[1pt] \begin{bmatrix} F_{AD} \\ F_{AC} \\ \end{bmatrix} &= \left[ \begin{array}{r} -1.5 \\ -1.5 \\ \end{array} \right] \ kN\ (C) \\[1pt] \hline \vec F_{AD_A} &= \begin{bmatrix} -0.9 \\ 1.2 \\ 0 \\ \end{bmatrix} \ kN \quad\quad \vec F_{AC_A} = \begin{bmatrix} 0.9 \\ 1.2 \\ 0 \\ \end{bmatrix} \ kN \\[1pt] \end{aligned}
Determine the force developed in each member of the space truss and state if the members are in tension or compression.
The crate has a weight of `150\ lb`.
First, find all force vectors that act at joint `C`.
`` \vec F_{crate} = \begin{bmatrix} 0 \\ 0 \\ -150 \\ \end{bmatrix} \quad\quad \vec F_{AC_C} = \begin{bmatrix} 0.35F_{AC} \\ -0.71F_{AC} \\ -0.61F_{AC} \\ \end{bmatrix} \quad\quad \vec F_{BC_C} = \begin{bmatrix} -0.35F_{BC} \\ -0.71F_{BC} \\ -0.61F_{BC} \\ \end{bmatrix} \quad\quad \vec F_{CD_C} = \begin{bmatrix} 0 \\ -F_{CD} \\ 0 \\ \end{bmatrix} ``
Joint `C` must be in equilibrium.
\begin{aligned} \vec F_{R_C} &= \vec F_{AC_C} + \vec F_{BC_C} + \vec F_{CD_C} + \vec F_{crate} \\[1pt] \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} &= \begin{bmatrix} 0.35F_{AC} \\ -0.71F_{AC} \\ -0.61F_{AC} \\ \end{bmatrix} + \begin{bmatrix} -0.35F_{BC} \\ -0.71F_{BC} \\ -0.61F_{BC} \\ \end{bmatrix} + \begin{bmatrix} 0 \\ -F_{CD} \\ 0 \\ \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -150 \\ \end{bmatrix} \\[1pt] \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} &= \begin{bmatrix} 0.35F_{AC} - 0.35F_{BC} \\ -0.71F_{AC} - 0.71F_{BC} - F_{CD} \\ -0.61F_{AC} - 0.61F_{BC} - 150 \\ \end{bmatrix} \\[1pt] \hline \left[ \begin{array}{rrr} -0.35 & 0.35 & 0 \\ -0.71 & -0.71 & -1 \\ -0.61 & -0.61 & 0 \\ \end{array} \right] \begin{bmatrix} F_{BC} \\ F_{AC} \\ F_{CD} \\ \end{bmatrix} &= \left[ \begin{array}{r} 0 \\ 0 \\ 150 \\ \end{array} \right] \\[1pt] \begin{bmatrix} F_{BC} \\ F_{AC} \\ F_{CD} \\ \end{bmatrix} &= \left[ \begin{array}{r} -122.47 \\ -122.47 \\ 173.21 \\ \end{array} \right] \ lb \\[1pt] \hline \vec F_{BC_C} &= \begin{bmatrix} 43.3 \\ 86.6 \\ 75 \\ \end{bmatrix} \ lb \quad\quad \vec F_{AC_C} = \begin{bmatrix} -43.3 \\ 86.6 \\ 75 \\ \end{bmatrix} \ lb \quad\quad \vec F_{CD_C} = \begin{bmatrix} 0 \\ -173.21 \\ 0 \\ \end{bmatrix} \ lb \\[1pt] \end{aligned}
Joint `B` must be in equilibrium.
\begin{aligned} \vec F_{R_B} &= \vec F_{AB_B} + \vec F_{BD_B} + \vec F_{BC_B} \\[1pt] \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} &= \begin{bmatrix} -F_{AB} \\ 0 \\ 0 \\ \end{bmatrix} + \begin{bmatrix} 0.5F_{BD} \\ 0 \\ 0.87F_{BD} \\ \end{bmatrix} + \begin{bmatrix} -43.3 \\ -86.6 \\ -75 \\ \end{bmatrix} \\[1pt] \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} &= \begin{bmatrix} -F_{AB} + 0.5F_{BD} - 43.3 \\ -86.6 \\ 0.87F_{BD} - 75 \\ \end{bmatrix} \\[1pt] \hline F_{BD} &= 86.6\ lb\ (T) \\[1pt] F_{AB} &= 0\ lb \\[1pt] \hline \vec F_{BD_B} &= \begin{bmatrix} 43.3 \\ 0 \\ 75 \\ \end{bmatrix} \ lb \quad\quad \vec F_{AB_B} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} \ lb \\[1pt] \end{aligned}
Joint `D` must be in equilibrium.
\begin{aligned} \vec F_{R_D} &= \vec F_{AD_D} + \vec F_{BD_D} + \vec F_{CD_D} \\[1pt] \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} &= \begin{bmatrix} -0.5F_{AD} \\ 0 \\ 0.87F_{AD} \\ \end{bmatrix} + \begin{bmatrix} -43.3 \\ 0 \\ -75 \\ \end{bmatrix} + \begin{bmatrix} 0 \\ 173.21 \\ 0 \\ \end{bmatrix} \\[1pt] \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} &= \begin{bmatrix} -0.5F_{AD} - 43.3 \\ 173.21 \\ 0.87F_{AD} - 75 \\ \end{bmatrix} \\[1pt] \hline F_{AD} &= -86.6\ lb\ (T) \\[1pt] \hline \vec F_{AD_D} &= \begin{bmatrix} 43.3 \\ 0 \\ -75 \\ \end{bmatrix} \ lb \\[1pt] \end{aligned}